

EV adoption, how fast can it go?

Peter Hogeveen

November 11, 2017

- A team of 15 consultants with various academic backgrounds
- Fully dedicated to the acceleration of sustainable mobility
- Strategy consultancy, project management research & innovation
- National and Global clients

Fuel costs	Maintenance costs	Vehicle class	Residual value
Fuel efficiency	Purchase subsidies	Luxury level	Battery capacity
Yearly mileage	Tax rebates	Vehicle power	Battery pack costs
Income	Lease or private	Discount rate	Ownership period

Total Cost of Ownership (TCO)

The power of agent-based simulation lies within modeling heterogeneity

Real neighborhoods have different characteristics

34%

SparkCity switches easily between neighborhoods

5/18

Income level says a lot about buyer and driver types

Real neighborhoods have different characteristics

85%

SparkCity switches easily between neighborhoods

Buyer and driver types per neighborhood

^{8/18} Cost developments for battery and drivetrains are modelled

TCO = sticker price + operation costs – residual value - subisides

Step 1: A resident requires a new vehicle Step 2: The resident determines its preferences and characteristics Step 3: The resident calculates the TCOs of the ICE and EV fitting its preferences

Step 4: The resident purchases the option with the lowest TCO

Fuel costs	Maintenance costs	Vehicle class	Residual value
Fuel efficiency	Purchase subsidies	Luxury level	Battery capacity
Yearly mileage	Tax rebates	Vehicle power	Battery pack costs
Income	Lease or private	Discount rate	Ownership period

Cost-parity differs per vehicle class

> 6000 car buyers simulated in a neighborhood resembling Dutch characteristics

11/18

12/18

A 'disposition' is implemented to correct for non-financial factors

Non-financial factors:

- 1. Brand and drive-train preferences
- 2. Driving range
- 3. Charging infrastructure
- 4. Charging process
- 5. Limited model choices for EVs
- 6. Limited EV stock

EV Market share with disposition much lower than with TCO based decisions

Takeaways for achieving 100% EV market share in 2030

 By 2027 all EVs have lower TCO than their ICE counterparts → policies should focus on nonfinancial factors such as raising awareness, placement of charging infrastructure, ICE bans and stimulating EV production

16/18

- 2. 80% of E-class EVs already financially more attractive → financial incentives might not be as effective for E-class vehicles
- 3. The smaller the vehicle class the lower the TCO differences (ICE vs EV) → financial incentives are likely to be more effective for smaller vehicle classes such as A, B and C.
- Smaller vehicle classes are the last to reach cost-parity → financial incentives for A class may significantly speed up adoption

- Surveys to provide more data for the disposition factor
- > 2nd hand EV flow between neighborhoods
- Model EV production limits
- Multiple car ownership of households
- Integrate car sharing and its effect on car ownership

EVConsult BV

Nederland Overtoom 60 1054 HK AMSTERDAM Nederland

Peter Hogeveen <u>p.hogeveen@evconsult.nl</u> +31 652381249