
 

 

Abstract — This paper describes a model for electric vehicle 

(EV) charging infrastructure rollout (until 2035) and usage on 

the neighborhood scale. An agent-based approach is adopted to 

realistically model the complex interactions between the 

heterogeneous actors involved. EV buying behavior, driving 

patterns of residents (and commuters) and the charge point roll 

out policies determine the development of the charging network, 

both public and private. Moreover, the battery capacity of the 

EV, the distance to destinations and a charging strategy based on 

SoC (State of Charge) are used to model the usage of charge 

points (CPs) and thereby the impact on the electricity grid. 

Stringent rollout policies by the municipality result in 18 public 

CPs while relaxed rollout policies result in 70 public CPs in 2035. 

Two case studies using different neighborhoods are performed 

and the results suggest a public to private CP ratio of 0.22 for a 

residential neighborhood and 1.32 for a commercial 

neighborhood. The model does not consider realistic business 

cases for the CPO (Charge Point Operator), DC fast charging 

and developments in charging technology. 

I. INTRODUCTION 

VER the past century, there has been a dramatic increase 

in the atmospheric CO2 levels due to reliance on fossil 

fuels. This has increased the surface temperature of earth 

considerably leading to climate change. The transport sector 

covers about 23% of the emissions of which car passenger 

transport covers 11% [1]. There have been stringent limits 

placed on the tailpipe emissions of all vehicles and in spite of 

such efforts the transport sector is still one of the major 

contributors to GHG emissions. EVs have the potential to 

substantially decrease the GHG emissions [2]. 

Similar to Internal Combustion Engines (ICEs) having 

fuelling stations to refuel the car, EVs have charging stations 

that charge the vehicle. The network of such charging stations 

form the charging infrastructure. The presence of a good 

charging infrastructure aids the market penetration of EVs 

since consumers are going to buy electric vehicles if they are 

assured of a way of charging it. The charging infrastructure 

being a barrier to household adoption of EVs has been 

discussed in [3]. There are many stakeholders who are 

interested in the charging infrastructure. These stakeholders 

are hesitant to deploy charging stations without understanding 

the demand of electric vehicles and loads on the grid.  

According to Bloomberg New Energy Finance (BNEF) [4], 

EVs are going to become as affordable as gasoline or diesel 

cars in the next six years. And when factors like the Total Cost 

of Ownership (TCO) comes to light [5], the EV market share 

is going to increase. This increase in market share of EVs will 

also increase the energy consumption. Since electricity is 

generated and supplied to consumers by the grid, the load on 

the grid will also increase. The forecast of increase in load 

impact on grid depends on other factors such as frequency and 

rate of charging, driving and charging patterns [6], size of the 

battery in the EV, EV adoption over the years (buying pattern 

of consumers) [7] [8] [9] [10], number of EVs at a specific 

location and number of charging points/stations. If the 

charging infrastructure of the future is known, it will help the 

stakeholders understand the load on the electricity grid better. 

This will lead to introduction of new policies to support 

development of EVs. The charging infrastructure of the future 

can be predicted by including development in the field of 

electric vehicles (battery prices, powertrain prices and TCO) 

and is co-determined by how consumers buy, charge and drive 

EVs. 

To study the placement of CPs and loads on the electricity 

grid, there is a need for a model that represents the complex 

charging network. The existing research on modeling of 

charging infrastructure is discussed in section 2. These models 

do not take into account the spatial and temporal patterns. The 

charging infrastructure is in itself a complex network 

consisting of heterogeneous agents interacting between each 

other and the decisions are more complicated than yes/no or 

true/false decisions. This leads to the research question: 

 

How to develop a model to determine electric vehicle 

charging infrastructure in the Netherlands until 2035 while 

addressing: 

¶ The type, operation and location of CPs 

¶ Different stakeholders, their behaviours and the 

interaction between them 

¶ Preferences of EV drivers and households 

¶ Developments in the field of electric vehicles  

 

The paper is presented as follows: section II describes the 

existing research in the charging domain and what the model 

will add to that. Section III talks about the methodology 
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behind the modeling technique used and the approach used to 

build the model. Section IV elaborates the implementation, 

technical details of the model and assumptions present in the 

model. Section V presents the results of the model based on 

various scenarios. Section VI and VII provide important 

conclusions and suggestions for future work, respectively.  

II. EXISTING MODELS 

This section deals with the already existing models about the 

charging network and the different modeling techniques 

currently used to model the charging infrastructure. Major 

research is carried out in the field of charging infrastructure 

that has helped investors understand the demand of EVs [11].   

 The optimal placement of charging points for instance, 

enables drivers to charge efficiently by minimising transport 

distance or by maximising energy used from a CP. A 

simulation-optimization model was developed in [12] to 

optimally locate EV chargers in central-Ohio region, 

maximising their use by privately owned EVs, also by 

considering level-one chargers. Genetic programming was 

used in [13] which presented a model for e-vehicles including 

range of vehicles and battery depletion where they move 

around on a real city map (the city map of Vienna). A genetic 

algorithm was also used to increase electric miles by public 

charging infrastructure deployment in [14]. A multi-objective 

optimization model was developed in [15] which maximizes 

the number of households reached and minimizes the 

transportation energy cost. The decisions were made by mixed 

integer linear/non-linear programming that used energy aware 

constraints. In [16], an extensive analysis of charge event data 

at charge points located throughout Ireland and Northern 

Ireland were conducted. The optimal charging infrastructure is 

chosen in terms of economic and practical effectiveness. 

A few mathematical models were also developed. [17] uses 

a mixed integer programming method. The algorithm 

minimized EV users’ station access costs while penalizing 

unmet demand in Seattle. For large-scale integration of EVs 

into the grid, [18] minimizes the total transportation distance 

using a modified Binary Particle Swarm Optimization (BPSO) 

based on Taboo Mechanism (TM). Modified primal-dual 

interior point algorithm (MPDIPA) is used to minimize total 

cost associated with charging stations in [19]. 

The charging infrastructure is influenced by a considerable 

number of stakeholders who have their own 

behaviours/actions and should be considered from an 

individualistic angle. These behaviours again depend on a lot 

of other factors and cannot be modelled using basic yes or no/ 

true or false decisions. These models are very useful in 

optimizing the current charging infrastructure and are not 

useful to model the future. Moreover, spatial and temporal 

patterns are not used in the models to determine charging 

behaviours. The buying decisions of consumers [7] [8] [9] 

[10], frequency of charging, location of charge points, 

development in EVs, policies regarding EVs and their 

charging etcetera (mentioned in Section I) are all important to 

model the charging infrastructure. This is complex and a 

bottom-up approach would be useful to add complexity 

starting from a basic model.  

The above factors are incorporated using Agent-based 

modeling (ABM), a modeling technique where stakeholders, 

drivers, EVs and CPs are considered as agents. The working 

of ABM and the definition of an actor in the context of ABM 

is given in the next section. As described in [20], “The key 

distinguishing element, that sets agent-based models apart 

from other models, is a focus on modeling individuals who 

can make decisions”. An agent-based model for the adoption 

of EVs is [21]. The consumer (household sizes, commuting 

distances etc.) and government agents are taken into account 

in this but does not take other agents such as the charge point 

manufacturer or charge point operator (refer section 3). In a 

similar study [22], a choice-based conjoint data of about 7000 

respondents were used to model heterogeneity of consumer 

preferences. The car manufacturer was included as an agent in 

this model. 

An ABM focused on the deployment of charging 

infrastructure is mentioned in [23]. It includes an EV adoption 

model and uses the driving patterns to develop an agent-based 

decision support system for the strategic placement of 

chargers. A vehicle is bought by an agent based on price, fuel 

cost, greenness, social influence, long distance penalty, and 

infrastructure penalty. The study mentioned in [24] calculates 

EV charging demand in a certain area taking social and 

economic variables into account. 

These models use few of the stakeholders. They either 

model the buying and driving behaviours [7] or charging and 

buying behaviours [9] by using a single day travel data [8] or 

driving profiles based on previous year’s data. Hence, the 

individuality that ABM provides is not present in the models 

described. The model described in this article takes into 

account all the stakeholders involved in charging (discussed in 

the section 3), the interactions of the buying, driving and 

charging modules to realistically build the visualisation of the 

complex phenomenon. Individual travel and charging profiles 

obtained from the simulation which is based on behaviours of 

various agents are used. This can give real life energy 

consumption data useful for determining real-time loads on 

the electricity grid. 

The technological development of EVs, specifically the 

battery and drivetrain price developments leading to the TCO 

(Total Cost of Ownership) is considered as part of the buying 

behaviours apart from the range anxiety, luxury preference 

and income level. Moreover, the inter-dependability between 

buying and charging, where a consumer’s buying decision is 

affected by the availability of charge points is also included. 

The following section talks about the validation of the use of 

ABM, the approach used to build the model based on ABM, 

the modeling language, the stakeholders (agents) involved and 

their basic behaviours.  

III. METHODOLOGY 

The charging infrastructure is influenced by a lot of agents 

interacting with each other and is a complex Socio-Technical 

System (STS) similar to the electricity infrastructure [25]. It 

can be modelled using a relatively new modeling technique 

called Agent-based Modeling [20]. The study in [26] also talks 

about car-based transportation and the adoption of alternative 

fuel vehicles as a socio-technical system.  



 

A. Bottom-up approach and agent-based modeling 

ABM can be particularly used for energy networks [25]. This 

method models agents and their behaviours from a bottom-up 

perspective. As described in [20], “In agent-based modeling, a 

model of an actor, or a group of actors (e.g. a company, a 

governmental institute, a community of citizens), is called an 

agent”. Moreover, these agents can be heterogeneous and can 

interact both in time and space, with each agent retaining 

memory of previous interactions.  

Each agent may have a different story, rules & preferences. 

Unique behaviour for each agent is the result, similar to the 

real world. The system behaviour is obtained from these 

micro-entities interacting with each other. The system does not 

need to be described in advance like with a top-down 

approach. However, the interactions and the agents involved 

should be provided as input. [27] stresses the value of bottom-

up modeling and explains how design changes occur at a 

lower level and system level changes emerge from this [20]. 

B. Verification and validation of ABM 

Validation is one of the major challenges that an agent-based 

modeller faces as described in [28]. [29] summarises four 

steps to validate an agent-based model: grounding, 

calibration, verifying and harmonizing, which integrates the 

verification and validation process.  

 This research project forms the Charging module of the 

Agent-based Buying, Charging and Driving (ABCD) model 

which predicts the rise of electric vehicles and charging 

infrastructure along with the impact of smart charging in the 

Netherlands. The aim of the charging module is to model the 

charging infrastructure rollout and usage in Dutch 

neighbourhoods. An overview of the charging module is 

shown in Fig. 1. The model was grounded in this research 

domain.  

 The model was calibrated to match the actual charging 

infrastructure. This involved adjusting the CP, municipality 

and CPO agents to observe charging behaviours close to the 

real world. Global parameters were also adjusted to match the 

neighbourhood and nation-wide market – for example, the 

percentage of residents with an EV at the start of the 

simulation was obtained from the percentage of EVs in the 

Dutch market [30]. The model calibration and verification 

were also done using expert insights and predictions. Charging 

domain experts [31] [32] [33] [34] [35] [36] and problem 

owners (The ABCD model group) were involved in meetings 

every week to discuss the behaviour of agents, the dynamics 

of the system and systematic reviewing of the assumptions and 

outcomes. This method of validation has face validity and is 

the most commonly used validation approach according to 

[25]. 

 The model was harmonized through independent testing of 

the charging module and further testing with the other parts of 

the ABCD model. The basic actions of charging were tested 

separately at every step of the model development. Testing 

using single and multiple agents were carried to find out if the 

model translates theory into computation. Moreover, the 

agents were also tested with extreme input values to “break” 

the agent [25] and find out threshold values of input that could 

cause the agent to behave differently.  

 Since all the four steps were carried out, the usage of ABM 

is well justified. The bottom-up model that was developed is 

explained in detail in the upcoming sections.      

C. Bottom-up model development 

In the charging model, the usage of charge points depends on 

the presence of work or home chargers, number of EVs and 

travel patterns. These in turn are understood from the activities 

of residents who own an EV. Thus building an environment 

with people and electric vehicles would be an important step 

to learn more about charging. 

 

1) The environment 

 The environment is the world where agents interact with 

each other based on their individual behaviours. In this model, 

geographical data from real neighbourhoods were used. The 

model can be applied to any neighbourhood within the 

Netherlands as mentioned earlier. Two representative 

neighbourhoods determined by [36] that contain a mix of 

offices, residential spaces, parking spots, visiting places, 

Fig. 1.  Overview of the charging module 



 

public and governmental buildings were used. This model can 

also be scaled to represent the whole of Holland. Two 

representative neighbourhoods, one in The Hague 

(Zeeheldenkwartier region) and the other in Arnhem (Alteveer 

region) are used. The Zeeheldenkwartier region is a 

neighbourhood in the centre of The Hague. It has 

predominantly smaller houses without private driveways and a 

few large houses for government officials. The Alteveer 

region is away from the centre of Arnhem and is a richer 

neighbourhood having larger houses and more private 

driveways than the Zeeheldenkwartier region.  

 GIS data of these neighbourhoods were used in the model. 

Exits - the points where people leave and enter the 

neighbourhood and roads - using which the residents and cars 

traverse through the neighbourhood were made in QGIS. 

These are also considered as agents in the model and were 

added to the neighbourhood to facilitate movement of people 

and cars. Next, the actors were added to the neighbourhood 

whose basic behaviours and interactions are discussed below.  

   

2) Actors, basic behaviours and interactions  

Once the environment was created, formulating the actors, 

their structures and behaviours is the next step. This is an 

essential step as mentioned in [25]. The agents relevant to the 

charging infrastructure are as follows (details on agents are 

discussed in the section IV):  

¶ The resident: People living inside the neighbourhood. 

They have an EV or ICE at the initialisation. They own a 

house, have a work place and also go on trips. 

¶ The commuter: People living outside but working inside 

the neighbourhood. Only commuters who own an EV are 

simulated since only their behaviour is interesting for the 

purpose of the model. 

¶ The EV: Cars that move in and out of the neighbourhood 

and are of paramount importance to the charging 

infrastructure. Residents or commuters own EVs. The car 

manufacturer agent makes EVs – A, C and E class 

models and the dealer agent sells them. The driving 

patterns enable the EV to move around. 

¶ Charge Point (CP): CP is responsible for charging an EV 

when it is connected to it. It charges at a specific rate that 

depends on the capabilities of the charger (AC single 

phase or AC three phase). It adds kWh to the battery at 

each time step and sends a signal once the EV is charged 

even though the EV remains connected after that until 

the driver comes to pick it up.  

¶ Charge Point Manufacturer (CPM): The CPM develops 

charge points and determines the price of the charge 

point. 

¶ Charge Point Operator (CPO): Charge point operator 

determines the selling price per kWh and makes money 

based on the amount of energy sold. CPO places a charge 

point once an EV is sold. It can be a public or private 

charger. It is also responsible for maintenance and repair 

of the CP.  

¶ Municipality: The municipality agent is responsible for 

making the decision to place a CP when a resident 

requests for a public charger (before buying an EV) 

through the dealer. If the municipality’s decision is 

negative, then the resident would not get a public charger 

and if positive, then the resident would get a public 

charger.  

¶ Parking places/spaces: This agent divides and sorts the 

parking spaces.  

Other agents are the buildings, roads, exits, car 

manufacturer and dealer. The consumer (household) and 

government agents have been looked into in [21], [10] and [7]. 

The municipality agent that is involved in the process of 

placing the CP was also taken into account. The CPO agent is 

used in [7] but it was a mere construction-destruction decision 

based on a certain formula. The rest of the model is explained 

in detail in section IV. 

D. Software implementation 

The current version of the model is implemented in GAMA, 

which was selected over other ABM platforms like NetLogo 

and Repast for its ease of use and open-source code. 

Moreover, it takes shapefiles containing GIS data to define the 

environment and also has intuitive agent-based language 

called GAML (GAma Modeling Language) which makes it 

coder-friendly [37]. It also has other useful agent-based 

capabilities, e.g. to inspect a single agent of the model to know 

what a specific agent is currently doing at any point during the 

simulation and how the attributes change during the 

simulation. 

This project has multiple researchers working on other parts 

of the model and a version control system was much needed. 

For this, Git was chosen since it has local control over the 

repository (decentralised) which was needed for the 

researchers to work on their respective parts without 

disturbing the build of the master code. Naming convention is 

important in such situations and the naming convention in this 

model was followed such that it is readable like the 

”home_CP” species name for a home charger and not x, y or z 

to represent charger species which would lead to ambiguity.  

Actions are sequence of statements that are executed only 

when called elsewhere and reflexes are sequence of statements 

that are executed at every time step. These can be defined in a 

species, model or experiment (used for running simulations 

and visualising). Actions, reflexes, species and variables were 

named such that all the collaborators jointly understand the 

model and  no conflicts occur. The model files (which have an 

extension .gaml) are divided such that there are several files 

which have specific functions and not a single file containing 

several lines of code. GAMA handles these by the import 

function which lets to import all the files into a common build 

file which has the experiments related to the whole model. 

ABCD_<name>.gaml is the usual syntax of model files. The 

name is the part of the model the file is representing – e.g. 

ABCD_charging.gaml represents the charging module file 

which is imported into the ABCD_build file so that the 

charging part is present in the model. The next section deals 

with the technical aspects of the model on how the charging 

network is modelled in GAMA and also briefly on the buying 

and driving module. The interactions between these are also 

discussed based on the agent behaviours.  



 

IV. CHARGING MODEL DEVELOPMENT 

This section deals with the technical aspects of the model on 

how agents are initialized and how they move around, how 

trip patterns are used, how the charging module works 

followed by what happens when agents buy/sell EVs. The 

charge point rollout methodology (disappointment point 

system), role of CPO, the municipality and the assumptions of 

each part of the model are also discussed. 

 The model aims to capture the buying, charging and driving 

activities of consumers who live inside the neighborhood. It 

also captures the driving and charging activities of commuters 

who come inside the neighborhood to work and go outside the 

neighborhood to their respective homes. This is important 

information for the CPs in the neighborhood since commuters 

contribute to the load on the grid during the day when 

residents of the neighborhood go outside the neighborhood for 

work/trips. As seen from Fig. 2, the neighborhood can be 

imported and displayed in 3D (wheat color – houses, grey – 

offices and light green – attractions) in GAMA.  

 Residents are assigned values for different attributes like the 

income, acceleration preference, range preference (level of 

range anxiety) and environmental attitude (attitude towards 

shift to EVs) [38]. Residents and commuters are assigned a 

work place. They are also assigned an activity and objective 

which records the activities they perform based on the 

objective e.g. the objective “working” means they have to 

leave to work and their activity would be “going to work”. 

Residents have a living place inside the neighborhood which 

they own and a visiting place (for trips). The EVs that are 

created have a class, battery capacity, an SoC attribute 

(kWh_in_battery), fuel efficiency (km/kWh), an owner and 

parking attributes based on the availability of home parking. 

The simulation step is important for the charging and driving 

models to function properly. The step in this model is 15 

minutes or 1 hour depending on the type of outcome required.  

 

Assumptions:  

¶  Residents and commuters own a single vehicle. 

¶  The driving behavior of a household is represented by 1 

resident. 

¶  Residents can own an EV or ICE (Internal Combustion 

Engine). Each resident owns either an ICE or EV at the start of 

the simulation. Commuters owning an EV are only considered 

in the model. 

¶  The residents who own an EV get a home charger if the 

agent has a private parking. If not, the agent requests a public 

charger close to the agent’s living place.  

¶  The car ownership for Zeeheldenkwartier region is 0.4 

and 0.8 for Alteveer region from [39]. This means that there is 

a 40% (or 80%) chance that a household has a car for 

transportation. 

¶  There is 20% chance that a household has a private 

driveway in Zeeheldenkwartier and 60% chance in the 

Alteveer region. 

¶  The number of residents having an EV at the beginning is 

based on real-world market data - [30] [40]. 

¶  Two driver types – working (commuting) and non-

working are implemented. 

¶  Three classes of vehicles – A, C and E-class are 

considered to be available types of car for residents to choose 

from [5].  

 

 
Fig. 2.  Imported neighborhood (Alteveer) from the city of 

Arnhem on top of a google earth layer 

A. Driving pattern and trips 

Since we are considering real life situations, the time all of us 

leave for work or for a trip is not the same every day - the 

same is reflected in the model. At the start of every simulated 

day, the trips on that day are determined for each resident and 

commuter. The time someone leaves home for work is 

considered to be a random time between 06:00h to 10:00h. A 

resident has a probability of going on a day trip, evening trip 

and weekend trip. Agents depart when the simulation time of 

the day is the trip depart time and return when the time is the 

trip return time. Objective is set to “working” when the agent 

has to work, “resting” when he has to go home and “make a 

trip” when he is about to go on a trip. The current activity of 

the agent is also set accordingly. A snapshot during a random 

simulation day (evening) is shown in Appendix (A). The 

charge remaining in the EV is calculated using: 

 

                                  ὅ ὅ
ὼ

–
             (1) 

 

Where ὅ  =  Charge remaining in the EV [kWh] 

   ὅ  =  Battery capacity of the EV [kWh] 
   ὼ   =  Distance of the last trip [km] 

   –  =  Energy efficiency of the EV [km/kWh] 

 

Assumptions:  

¶  The mersenne random number generator is used to 

generate random numbers [41]. 

¶  Trips that require the use of a car are only considered. 

¶  Trips for commuters are not taken into consideration 

since that happens outside the neighborhood. Commuters 

always come with 100% charged EVs into the neighborhood. 

¶  The time to leave for work is determined from [42] 

(when the step size is 15 minutes). The working time for 

commuters and residents is eight hours from the start of work.  

¶  50% chance for a resident who owns an EV has a work 

charger or a destination charger (for trips). 



 

¶  The distances for work trips (both residents and 

commuters) and other trips (residents) are generated from 

OViN data [32]. 

¶  10% chance that a resident goes for an evening trip, 20% 

chance that a non-working resident goes on a day trip and 40% 

chance that a resident goes on a weekend trip is assumed in 

the model. The departure and duration of various trips is given 

in Appendix (B) – Table III.  

B. EVs and charging infrastructure  

The charging in the model happens as follows: 

¶  A person arrives either at home, work or visiting and 

makes a decision about charging. 

¶  The person chooses a charge point if he/she wants to 

charge. 

¶  The car goes to the CP and charges until it is full. 

¶  The CP charges the EV at a certain charging speed 

(through an action). 

¶  It stops charging when the car’s battery is full but the car 

is still connected to the CP till the agent comes and picks up 

the car. 

 The model has a complex charging system which includes 

sockets for chargers. Sockets correlate to the number of cars 

that can charge simultaneously. The numbers of cars charging 

from a CP cannot be more than the number of sockets. The 

CPs also show the available number of sockets during the 

simulation i.e. if the number of sockets is initially 2 and then a 

car connects and starts charging, the number of available 

sockets is reduced to 1. If the number of available sockets is 0, 

then the attribute accessible (a Boolean) is set to false and the 

charger is no longer accessible for any other EV. The model 

also shows both visually and non-visually whether a charger is 

in-use or not, using an attribute in_use (a Boolean). When an 

EV is charging or parked the in_use is set to true. The CPs 

also record the cumulative energy supplied by them for which 

there is an attribute in each CP agent. The model also records 

the total energy supplied by all the public CPs in the 

neighbourhood. The CPs also have an attribute called 

disapPoints which is a part of the Disappointment Points 

System explained later.  

 Now, when an agent reaches the work place or home there 

is a search for a charge point if necessary. If the agent has a 

home or work charger, the EV gets charged always regardless 

of the SoC (State of Charge). But, when either of that does not 

exist, then the agent has to look for a public charger. This is 

when the sockets are useful to define real-world closeness. 

The agent checks the SoC of the EV and the distance to the 

closest public CP which is explained below and is called the 

CSoC approach.  

 

Charging based on SoC of the EV (CSoC): 

 The agent checks the SoC of the EV and decides on the 

distance to look around for a public CP. If the agent finds a 

public CP in the specified radius which has a free socket 

(meaning it is accessible) then, the EV is connected to the CP 

and starts to charge. Table I summarises the SoC and distance 

to a public CP conditions that the agent uses. For commuters 

the first option (>=80%) does not exist and they do not charge 

if the charge is more than 80%. If there is no public charger 

available with these limits and specifications, then the agent 

does not charge the EV and parks the car at the respective 

parking place. The CPs are rated at 230 V x 16 A. The power 

output of the CPs is calculated as follows: 

 

                                        ὖ  
    

              (2) 

 

Where ὖ = Power supplied by the CP [kW] 

   ὲ = Number of phases  

   ὠ = Voltage rating of the CP [V]   

   Ὅ  = Current rating of the CP [A] 

 

Assumptions: 

¶  Home CPs and work CPs have a single socket and public 

CPs have 2 sockets.  

¶  The year of placement of CPs initialised in the 

neighbourhood is assumed to be a random year between the 

2010 and 2017. This does not apply to CPs that are placed 

later (for which the current year is the year of placement). 

¶  DC fast charging is not considered in the model. 

¶  Home CPs are AC single phase (3.7 kW power output - 

230 V x 16 A) while work CP and public CP are AC 3 phase 

(11 kW power output - 230 V x 16 A).   

¶  The speed of charging is solely based on the capabilities 

of the CP and not the EV.  

C. Buying, selling EVs and placement of Charge Points 

Residents in the neighbourhood are car owners. Every 

simulation month agents may decide to purchase a new 

vehicle if he/she does not own one. The resident also sells the 

vehicle when the ownership period is over. When the decision 

to purchase a new vehicle is made, a ‘visit’ to the car dealer 

provides the buyer with a list of currently available EV and 

ICE models with their respective battery size, power and class, 

all with a certain price tag. These available models and their 

prices develop over time. The dealer agent selects the right car 

based on the resident’s income, range and acceleration 

preferences. More about the buying decisions are given in 

[38]. Before this, the resident asks the dealer whether he/she 

will get a public charger – this happens when the resident does 

not have a private parking at home. 

 The buying decisions are also affected by the availability of 

public/private charging. If the resident has a private driveway, 

he/she always buys a home charger given that he/she buys an 

EV. If the resident requests for a public charger (since he/she 

does not have private driveway), the dealer asks the CPO and 

municipality if they are ready to place a charger near the home 

TABLE I 

CONDITIONS FOR POSITIVE CHARGING DECISION – CSOC APPROACH 

State of Charge  
Distance to a Public Charger (in 

meters) 

  
>=80% Less than or equal to 50 meters 

 

<80% & >=60%  Less than or equal to 100 meters 
  

<60% & >=40%  Less than or equal to 200 meters 

  
<40% & >=20%  Less than or equal to 300 meters 

  

<20%  Less than or equal to 500 meters 
  

 
 

 



 

of the resident. Commuters are introduced at every month of 

the simulation. The ratio of the number of EVs in the 

neighbourhood to the number of residents which is called the 

EV ratio is used to introduce commuters. This is to make sure 

there is a like-like comparison of the number of residents with 

an EV and the number of commuters in the neighbourhood. 

Further, if a commuter’s work place has a private parking 

possibility then there is 80% chance that there is a work 

charger installed. So, the model also includes the placement of 

work and home chargers. The charging module accounts for 

the selling of EVs also, i.e. residents already having a charger 

from the previous purchase of an EV, do not request for a new 

charger when they purchase their next EV. The rest of the 

section explains how the municipality decides whether to 

place a charge point or not. 

 

1) Disappointment Point System 

The disappointment point system adds disapPoints to the CP 

under certain conditions. When a resident or commuter is 

looking for a public charger, the charger that is accessible is 

chosen and the agent goes to that charger. If for some reason, 

the public charger that the resident/commuter goes to is not 

the same as the public charger closest to the living 

place/working place, then one disappointment point is added 

to the disapPoints attribute of the charger that is closest to the 

agent which means that the resident/commuter is not happy 

that the closest charger is not accessible when it is needed. 

Moreover, this disappointment point is added to the closest 

charger only if the distance the user has to go to find another 

charger is more than 100 meters since the user does not mind 

going 100 meters to find another charger. This way, given a 

neighbourhood, one can find out CPs which are not accessible 

often which is important for the municipality.  

 

2) Municipality agent 

The municipality has a certain radius of search up to which the 

chargers (within that radius) are checked for the disapPoints. 

This search radius defines the number of public CPs around 

the user that is checked. If all the chargers within that radius 

have enough disapPoints: defined by the 

disapPoints_threshold which is an attribute that defines the 

minimum number of disapPoints needed for that CP to be 

considered frequently-used; then the municipality sends a 

“yes” decision to place a public CP near the resident who 

requested for one. When the resident knows that the 

municipality is willing to place a CP, the chances of buying an 

EV is more than when a CP would not be placed. The decision 

from the municipality can also be a “yes” when there are no 

chargers in the search radius mentioned. The municipality 

decision making process is given in Fig. 3.  

 

3) CPO agent 

The CPO always makes sure there is a positive business case 

in the model and if the decision is “yes” from the municipality 

and the resident buys an EV, the CPO always places the CP. 

Predictions for the periodic costs (yearly costs) and the one-

time fixed costs of CPs were taken from [43] and for a 

payback period of 10 years, the total price per CP per month 

that the CPO has to pay was found. A power law was fitted to 

the found estimates. The general form of a power law is: 

 

                                            Ὢὼ ὑὼ                                     (3) 

 

where ὼ > 0 and ὑ,  are constants. As shown in Fig. 14 in 

Appendix (C), the power curve that was obtained is given by: 

 

                             ώ ρπψȢσψρ ὧ ί Ȣ                       (4)     

 

Where ώ = Price per CP per month [ϵκmonth] 
     ὧ = Current year of simulation 

     ί = Starting year (2013) 

     ὑ = Price per CP per month in 2013 [ϵκmonth] 
      = 0.256 (Learning index) 

 

 
 

Fig. 3.  Municipality decision making process 

The slow charging cost calculated by the CPO is given by: 
 

                          ὅ ρȢρυ 
 В

                    (5) 

                                                                                                     

Where ὅ  = Slow charging cost [ϵ/month] 

    Ὁ  = Total energy delivered by the CPs [kWh],  

    ὅ   = Cost to deliver kWh by the CPO (11 cents/kWh) 

    В ώ = The sum of the total cost per month of all the 

CPs in the neighbourhood [ϵ/month]; ὲ is the number of CPs 



 

in the neighbourhood and ώ is the price per CP per month of 

the ith CP [ϵ/month] (from eq. 4).     

 

Assumptions: 

¶  The radius of search for the municipality is set to 250m 

unless stated otherwise.  

¶  The disapPoints_threshold is set to a value of 10 unless 

stated otherwise.   

¶  The disapPoints are set to 0 for each CP every month 

after the buying decisions happen. Also, the cumulative 

energy supplied it reset every month since the calculations are 

made by the CPO on a monthly basis.  

¶  There is a 70% chance that the resident is inclined to still 

buy an EV when the decision from municipality is a “no”. 

¶  A power law was assumed to find the fit between price 

per month per CP and years. The power law is based on the 

years and not the production number. 

¶  Profit for the CPO is fixed at 15%. 

 

 To maintain a charging network that is accessible and to 

model a charging regime that is close to reality, different 

innovative approaches and systems like CSoC and 

disappointment point system were used in this model. These 

have a direct influence on the number of CPs placed and the 

impact on the grid. The next section presents the results 

obtained from the model under various scenarios that are 

interesting to the charging module.   

V. SCENARIO ANALYSIS AND VALIDATION 

For the purpose of testing the model, single and multi-agent 

testing were done (as explained in section III). A single agent 

was explored using the inspect function of GAMA and 

determined whether it performs the required actions. For 

example, a resident has to go to office on weekdays and has to 

leave/return home by the time specified by the model. 

Extreme input values, interaction testing in a minimal model 

and sanity checks were done to check if a single agent 

functions as per the requirements. When the behavior of a 

single agent was verified, multi-agent testing was done. For 

this purpose monitors and charts were used to examine the 

statistics of the outputs. This section deals with some 

interesting scenarios and results obtained from the model. 

Parameters that influence the system behavior were changed 

to find the effect on the results.   

 The starting date of the simulations is taken to be 1st 

January 2017. The step size is either 15 minutes or 1 hour 

based on the scenario under consideration. To reduce 

computation time, the simulations were done for 200 residents 

and scaled up to represent an ownership of 0.4 and 0.8 in The 

Hague and Arnhem neighborhood respectively (as mentioned 

in section IV). Zeeheldenkwartier is used for simulations 

unless stated otherwise. For each scenario, the seed of the 

simulations were kept the same in order to analyze the 

influence of a certain parameter under the same conditions. 

A. Effect of search radius (municipality)  

Fig. 3 shows that the ‘search radius’ impacts the number of 

public charge points that are placed in the neighborhood. Fig. 

4 explores this impact by showing the development of public 

CPs in the neighborhood with different search radii. The 

model is initialized with 3 public CPs. When the search radius 

is set to 100 meters, the number of public CPs the 

municipality has to check (when there is a request from the 

resident) for disapPoints is lower than with a search radius is 

set to 250 meters. 500 meter search radius spans almost 70% 

of the neighborhood (in this case) and it is a case where the 

municipality may end up checking all the public CPs for 

disapPoints. So, when there is a request for a public CP, a 

100m search radius would result in lesser CPs checked for 

disapPoints and hence more probability of getting a public CP 

for the requested user. This results in more public CP in the 

neighborhood than with the search radius being 250m. Thus 

the disappointment point system impacts the placement of CP 

in the neighborhood.  

 

 
Fig. 4.  Effect of search radius on number of public CPs placed 

 The increased charge point rollout between 2025 and 2028 

is a result of increased EV sales, whose dynamics are 

attributed to the buying module (see Fig. 15 in Appendix (D)). 

B. Effect of battery size on number of CPs placed 

 
Fig. 5.  Effect of battery size on number of public CPs placed 

The effects of the CSoC approach are explored with scenarios 

keeping the battery sizes of the EVs in the neighborhood fixed 

at 30 kWh, 60 kWh or 90 kWh. 100m search radius is used. 

When every EV in the neighborhood is 30 kWh residents 

charge their EV more often because their battery provides less 

range compared to scenarios with higher battery capacities 

(see the explanation of the CSoC approach in Section IV). 

Charge points are used more often, theoretically leading to 

more disapPoints. Therefore, the number of public CPs placed 



 

should be higher as shown in Fig. 5. On the other hand, when 

the EVs have a bigger battery size, then the users have enough 

charge to go back home from the destination without charging 

and hence the numbers of chargers placed is lesser 

(disapPoints are lower).   

Note: these scenarios limit the EV buying options (one 

battery size per class), resulting in less EVs bought and less 

public CPs installed than in scenario A. 

C. Effect of neighborhood type on number of charge points 

As mentioned earlier, this model can be used for any 

neighborhood within the Netherlands since most of the inputs 

are calibrated for the Netherlands. Each neighborhood has 

different characteristics like the geographical location (i.e. 

urban, suburban, rural, etc.), density, road layout and 

connectivity; economic diversity and functionality (i.e. 

residential, commercial, retail, etc.).  Table II in Appendix (A) 

provides more details on the neighborhoods used.  

 

 
Fig. 6.  Ratio of public to private CP in the two neighborhoods   

 Fig. 6. shows the ratio of public chargers to private chargers 

in the two neighborhoods considered. The model was 

initialized with 3 public CPs and 2 home CPs in both 

neighborhoods in order to have similar starting conditions. 

This caused the initial spike in the Alteveer neighborhood 

which has higher share of private driveways (and thus tends to 

get more private CPs more than public CPs). This is not the 

case with the Zeeheldenkwartier region where predominantly, 

houses do not have private driveways. Naturally, the public to 

private CP ratio is higher in Zeeheldenkwartier than Alteveer. 

The dotted lines represent the average ratio in both the 

neighborhoods.   

Fig. 7 shows the number of work chargers placed in the 

neighborhood. For the Zeeheldenkwartier region, which has 

204 offices, there are a lot more work chargers placed than the 

Alteveer region which has 4 offices. 

D. CSoC and impact on the electricity grid 

To study the impact on the electricity grid, the average 

electricity usage profile of a single household every 15 

minutes was obtained from [44] and is given in Fig. 8. This 

was added with the load from EVs to give the total load on the 

electricity grid.  

 The simulations in this scenario were carried out with a step 

size of 15 minutes to accurately visualize the loads on the grid. 

200 residents and 50 commuters were used and 40% of the 

residents were assumed to own EVs (Zeeheldenkwartier 

region) while all the commuters own EVs. The CSoC 

approach can impact loads on the grid as shown in Fig. 9. The 

simulation was run for two days. In the morning, residents 

travel outside the neighborhood to work and the load on the 

grid is due to the commuters. With the CSoC approach, 

commuters do not charge if they have more than 80% of 

charge remaining in their EVs which is why the peak loads are 

reduced during the day. In the evening, the residents only 

contribute to the loads and since all the residents are assumed 

to have a public or home CP at initialization, the loads on the 

grid are not affected by the CSoC approach. 

 

 
Fig. 7.  Number of work chargers in the two neighborhoods 

 

 
Fig. 8.  Average electricity usage profile for a single household 

(every 15 minutes) 

 Fig. 10 shows the case when the availability of public CP is 

varied. The CSoC approach is used in this scenario. Residents 

who own an EV have 100% chance of getting a public CP in 

one case and 10% chance of getting a public CP in another 

case. If the resident has home parking, then he always gets a 

home CP. As seen in Fig. 10, the peak loads are lower when 

the number of public CPs are low. But, this might lead to a 

fact that the resident does not find a way to charge the EV 

even though the SoC of the EV is low.  



 

 
Fig. 9.  Effect of CSoC on the electricity grid 

 Fig. 11 shows the case when the battery sizes of cars 

present in the neighborhood are 30 kWh and 90 kWh. The 

CSoC approach is used in this scenario. Residents have 100% 

chance of getting a public CP if they do not have home 

parking. Residents follow the same CSoC approach as 

commuters i.e. the first option in Table I is excluded for 

residents in this scenario. This means that both residents and 

commuters do not charge if the SoC is more than 80%. As 

seen from Fig. 11, using smaller batteries leads to more usage 

of charge points (refer scenario B) and hence larger loads on 

the grid. 

 

 
Fig. 10.  Effect of the availability of public CPs on the electricity 

grid  

VI. CONCLUSIONS  

 The agent-based model presented implements the 

disappointment point system, which is used by the 

municipality agent in the decision making process for the 

deployment of public CPs. Varying the search radius resulted 

in 70 public CPs (100 meter), 18 public CPs (250 meter) and 6 

public CPs (500 meter). However, it was observed that the 

disapPoints_threshold did not affect the number of public 

charge points placed. This can be attributed to the refresh rate 

of the disapPoints. Also, it could be the fact that a few CPs get 

most of the disapPoints due to the CSoC approach. Therefore, 

when the municipality checks a specific radius, not all CPs 

have enough disapPoints. 

 Given a neighborhood with more private driveways, larger 

houses and lesser work places (Alteveer) it was observed that 

there were 27 public CPs, 119 home CPs and 5 work CPs 

placed in 2035. In Zeeheldenkwartier with comparatively 

lesser private driveways and more offices, it was observed that 

70 public CPs, 53 home CPs and 54 work CPs were placed. 

This suggests that the model identifies and accommodates 

differences in neighborhoods such as population density, 

economic diversity and functionality to predict the charging 

infrastructure. Municipalities of specific neighborhoods can 

use this model to realistically determine the required public 

charging infrastructure and thereby the rollout policies needed. 

This allows municipalities and grid operators to be one step 

ahead and consider the shift to EVs a lesser threat to the grid.  

 

 
Fig. 11.  Effect of battery size on the electricity grid 

 This model was also successfully used to determine the 

loads on the electricity grid based on the battery size of the 

EV, SoC (CSoC approach), distance to destination and 

existence of public charge points. The CSoC approach reduces 

peak loads in the morning from 60 kW to 45 kW (first 

simulation day). The case study on availability of public 

charging suggests a reduction in the peak loads (morning) 

from 64 kW to 42 kW when not every resident gets a public 

CP at initialization. This reduces the options available for EV 

drivers to charge. The model suggests that given a specific 

neighborhood, number of EVs and CPs, the loads can be 

reduced by users implementing the CSoC approach.   

VII. FUTURE WORK 

This model can be used to introduce smart charging strategies 

for efficient management of loads on the grid. Smart charging 

involves providing incentives such as cheaper electricity 

tariffs and faster rates of charging to users thereby allowing 

strategies like off-peak charging, valley-filling and peak 

shaving. Another interesting research avenue could be the use 

of the model for V2G (Vehicle-to-grid) capabilities where the 

EV provides power to the grid during peak hours and is re-

charged during the night at cheaper rates. 

 The disappointment point system can be further developed 

to add disapPoints based on distances. Now, one disapPoint is 

added when the distance to the closest accessible charger is 

more than 100 meter. This can be improved by introducing 

disappointment meter which would just add the distance 

travelled to the public CP as disapPoints. Accurate modeling 

of the disapPoints is enabled through this but this would 

further complicate the decision making process of the 

municipality. The municipality agent places charge points 

based on the requests of users who have bought an EV only. 



 

This can be improved by the municipality inspecting charge 

points regularly to find out which charge points have 

considerable amount of disapPoints and placing a charge point 

if a group of chargers at a certain area in the neighborhood 

have lots of disapPoints. This way the charging infrastructure 

is made more available for the EV drivers. 

 One limitation of the ABM developed in this paper is that 

the CPO agent always has a positive business case in contrary 

to the real world. The CPO looks at his business case and 

places a CP only in the event of a profitable venture. This was 

not introduced in the model. Also, the model does not include 

DC fast charging since a neighborhood level scale was 

considered and fast charging would be of more use when 

simulating larger areas (even the whole of Holland) and 

people go for longer trips and require highway charging. 

Developments in charging technology i.e. charging EVs based 

on the capabilities of both the EV and the CP, introduction of 

multiple sockets for work CP and more than 2 sockets for 

public CP in the coming years can be added to the model to 

further improve the predictions.  
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APPENDIX  

A. The neighborhood in GAMA 

 

Fig. 12 shows the neighborhood of the Hague 

(Zeeheldenkwartier) during a random simulation day.  Fig. 13 

is the legend for understanding the neighborhood. Grey are 

houses, light blue is given to offices and orange to attractions. 

Light green is given to parking spaces. Green color represents 

offices or houses which have a private parking possibility. 

Table II provides details on the number of houses, offices and 

other buildings in the two neighborhoods.  

 

 

B. Departure and duration for trips 

Table III provides insight into the trip patterns of residents – 

the departure time and duration of the three kinds of trips used 

is given.  

 

 
 

Fig. 12.  Snapshot of a random simulation day evening in the 

Zeeheldenkwartier neighborhood 

 

 
Fig. 13.  Legend for the Zeeheldenkwartier neighborhood in 

GAMA   

TABLE III 

TRIP DURATION AND DEPARTURE TIMES 

Type of trip Time of Departure Duration of trip 

 
Evening 

 
Between 19:00 and 21:00 

 

 
Random of 3 hours 

Day 09:00 (only for non-working 
drivers) 

 

Random of 10 hours 

Weekend Between 00:00 to 13:00 Random of 24 hours 

   

 

TABLE II 

NEIGHBORHOOD DETAILS 

 Zeeheldenkwartier Alteveer 

 

Houses 
 

Offices 

 

 

2052 
 

204 

 

494 
 

4 

 
Exits 6 

 

5 

Attractions 
 

Parking Places 

73 
 

574 

3 
 

99 

   

 



 

 

C. Power law for the CPO 

 
Fig. 14.  CPO predictions of total price per CP per month 

Fig. 14 shows the power law that is used to predict the price 

per CP per month that the CPO used to determine the slow 

charging cost of the neighborhood. 

D.  Cumulative EV sales based on search radius  

Fig. 15 shows the cumulative EV sales in each year. It can be 

seen from Fig. 15 that the number of EVs sold increases 

considerably between 2025 and 2028 due to the ownership 

period of vehicles - which is a normal distribution having 

values of 9,10 and 11 years. This means that residents who 

own an ICE (or an EV) in 2017 tend to sell and buy another 

one, between 2025 and 2028 and in 2034 also.  

 

 
Fig. 15.  Cumulative EV sales based on search radius of 

municipality 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


