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Executive summary
The electrification of transport increases the peak electricity demand in the electricity network at times 
people arrive at work or come home from work. At the same time, the electricity produced by intermittent 
renewables is increasing as well. Their intermittency also causes high load peaks on electricity networks and 
make it hard to match electricity supply and demand. These trends make smart charging based on price 
optimisation an increasingly interesting solution to reduce electricity costs for EV charging and match supply 
and demand on spot markets. 

At the TU Eindhoven an agent-based model is developed to answer questions about the future Dutch EV 
environment. The model is called the agent-based model for the buying, charging and driving of electric 
vehicles (the ABCD model) (Auke Hoekstra 2017). The purpose of the ABCD model is to simulate the EV 
environment of a specific neighbourhood, so different stakeholders can understand the needs of future 
charging infrastructures. Smart charging will also be part of this future charging infrastructure. It would be 
interesting for stakeholders to be able to analyse smart charging in Dutch neighbourhoods. Therefore, the 
following research goal is formulated for this research. 

Develop a module for the ABCD model to simulate smart charging based on price optimisation in a 
neighbourhood.

The smart charging module will enable stakeholder to assess the following questions:

Electricity supplier: How much charging load in the neighbourhood is flexible due to smart charging? Local 
grid operator: When do load peaks occur and how high are these load peaks in the neighbourhood when 
smart charging is applied? EV owner: With what percentage are the charging costs reduced when smart 
charging is applied? Dutch government: What is the percentage increase in charged renewables when smart 
charging is applied? Energy investor: What is the percentage increase in revenue for renewable generated 
electricity sold on the day-ahead spot market when smart charging is applied?

The smart charging module is simulating spot market prices and using those prices to optimise the charging 
sessions in the simulations of the ABCD model. Also, the charging load of the EVs is translated to an increase 
in demand on the spot market to assess the interaction between charging and spot markets. 

The spot market price simulation is validated with 2016 prices. The smart charging simulations are validated 
by relating the outputs to the input parameters in different scenarios. The scenarios are also used as example 
scenarios that can be assessed with the ABCD model including smart charging. 

Some striking conclusions are drawn with the scenario analyses. Firstly, smart charging is shifting 90% of the 
charging load from the early morning and late afternoon to midnight. This indicates the great potential to 
use smart charging for balancing electricity portfolios of energy suppliers. Secondly, charging costs can be 
reduced with around 32% which is equal to 5 €/month per EV in 2025. Thirdly, smart charging can increase 
renewable generated electricity with 18% in 2025. And lastly, revenues for renewable generators are 
decreasing when smart charging is applied due to a decrease in average spot market prices. 

Keywords: Smart charging, Smart energy systems, Electric vehicles, Spot market, Renewable generation, 
Agent-based modelling, Cost-effective electricity network
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1 Introduction

1.1 The synergy between intermittent renewables and smart charging

The share of electric vehicles (EV’s) is increasing in The Netherlands (RVO 2017), due to decreasing cost of 
battery packs and policy incentives(Maarten Cuijpers, Auke Hoekstra, and Wouter Bakker 2016). Over the 
coming decades, the cost of battery packs are likely to decrease further (Bloomberg Finance, 2017; Goldman 
Sachs, 2016; Nykvist & Nilsson, 2015) to a point where energy and maintenance cost savings of electric 
vehicles will outweigh battery costs (Bloomberg Finance 2017; Maarten Cuijpers, Auke Hoekstra, and Wouter 
Bakker 2016), resulting in quickly increasing electric vehicle sales (International Energy Agency 2016; 
Bloomberg Finance 2017). 

The electrification of transport increases the peak electricity demand in the electricity network at times 
people arrive at work or come home from work. At the same time, the electricity produced by intermittent 
renewables is increasing as well. Their intermittency also causes high load peaks on electricity networks and 
make it hard to match electricity supply and demand. Research has found that this mismatch between supply 
and demand on electricity spot markets results in higher price volatilities (Green & Vasilakos, 2009; Sensfuß 
et al., 2008). Higher volatility makes smart charging based on price optimisation an increasingly interesting 
solution to reduce electricity costs for EV charging. 

The mismatch between supply and demand on spot markets also reduces the revenue per kWh of renewable 
generated electricity. The revenue decreases because high penetration of renewable energy decreases spot 
market prices (Ueckerdt, Hirth, Luderer, & Edenhofer, 2013). This phenomena is researched extensively and 
is called the profile effect (Agora Energiewende, 2013; Brouwer, Van Den Broek, Seebregts, & Faaij, 2014; Sijm, 
2014).

The powerful synergy of intermittent renewables and smart charging is that spot market demand is increased 
at times of high penetration of renewable energy. This decreases the profile effect, thus increasing the 
revenues for renewable generation. Thus, with increasing intermittent renewables, smart charging becomes 
an increasingly interesting solution to create a cost effective electricity system. 

1.2 Agent-based model to analyse the future Dutch EV environment

At the TU Eindhoven an agent-based model is developed to answer questions about the future Dutch EV 
environment (Auke Hoekstra 2017; Vijayashankar 2017; Dai 2017). The model is called the agent-based model 
for the buying, charging and driving of electric vehicles (the ABCD model) (Auke Hoekstra 2017). The purpose 
of the ABCD model is to simulate the EV environment of a specific neighbourhood, so policy makers can 
understand the needs of future charging infrastructures. Agent-based modelling (ABM) is eminently useful 
to simulate unknown dynamics of a system, if the behaviour of individual components is well defined. 

Research has been done about the use of ABM for the analyses of the future Dutch EV environment (Bruch 
& Atwell, 2015; Eidelson, 1997; Holland, 2006). ABM is used in the ABCD model to simulate realistic behaviour 
inside a Dutch neighbourhood that the user wants to analyse. The road network, electricity network and 
houses of the neighbourhood can be uploaded with GIS data. The ABCD model simulates the behaviour of 
the residents in this neighbourhood. A resident agent can buy and drive his EV and charge the EV at a charge 
point in the neighbourhood. A flowchart and summary of the ABCD model can be found in Appendix 8.1.
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1.3 Problem definition and research goal

The ABCD model is a tool to analyse future scenarios concerning the future EV charging infrastructure. Smart 
charging will also be part of this future charging infrastructure. However, smart charging cannot be simulated 
with the ABCD model. Smart charging would be a valuable addition to the ABCD model. Therefore, the 
following research goal is formulated for this research. 

Develop a module for the ABCD model to simulate smart charging based on price optimisation in a 
neighbourhood.

Examples of questions from stakeholder that can be answered with the module are:

Electricity supplier: How much charging load in the neighbourhood is flexible due to smart charging? Local 
grid operator: When do load peaks occur and how high are these load peaks in the neighbourhood when 
smart charging is applied? EV owner: With what percentage are the charging costs reduced when smart 
charging is applied? Dutch government: What is the percentage increase in charged renewables when smart 
charging is applied? Energy investor: What is the percentage increase in revenue for renewable generated 
electricity sold on the day-ahead spot market when smart charging is applied?

1.4 Research framework

The smart charging module is connected to the ABCD model via the charge points as is indicated by Error! 
Reference source not found.. The smart charging module is divided into three boxes:

BOX 1: Simulating spot market prices to enable smart charging based on price optimisation.

BOX 2: Makes optimised charge schedules for the charge points in the ABCD model neighbourhood using 
the spot market prices of BOX 1.

BOX 3: Translating the charging load in the simulation to an increase in demand on the spot market.

Fig. 1 Flowchart of the smart charging module. The module is divided into three boxes. The module is interacting with 
the ABCD model via the charge points in the neighbourhood. 
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These three elements define the research framework. Throughout this report, this framework is used to 
divide the chapters into three sections. The smart charging module is divided into three boxes that represent 
these mechanisms as shown in Error! Reference source not found.. Error! Reference source not found. 
shows the ABCD model with the smart charging model incorporated. 

The smart charging is regulated by a virtual entity called the aggregator. As was mentioned in the previous 
paragraph, the smart charging module is used to control the charge points in the ABCD model 
neighbourhood simulation. The development of the boxes is based on the assessment of the following sub 
questions:

BOX 1: How to simulate electricity prices on day-ahead spot markets?

BOX 2: How will commercial parties apply smart charging based on price optimisation in The Netherlands?

BOX 3: How can the increase in spot market demand due to charging be estimated?

1.5 Chapter outline

This report is a model development paper and the chapters are structured accordingly. Chapter 2 “modelling 
approach” is a theoretical foundation for the development of the model. The sub-questions are discussed in 
this chapter with a short methodology and the conclusions per sub-question. Chapter 3 “model development” 
gives an outline of the module boxes with the crucial assumptions that were made to develop the boxes. 
Chapter 4 “model validation” presents a method to validate the model and presents the results of this 
validation. The module boxes are validated separately by relating the box outputs to the box inputs under 
different input scenarios. 

BOX 3 is validated with a scenario analyses using the complete ABCD model with smart charging module. 
This allows to validate the whole model and to give an example of scenarios that can be tested with the new 
smart charging module. Four scenarios are tested:

1. Low renewable generation and low EV adoption.
2. High renewable generation and low EV adoption.
3. Low renewable generation and high EV adoption.
4. High renewable generation and high EV adoption.

This scenario analysis is also used to reflect back on the first section in this introduction, where the 
complementary characteristic of renewable generation and EV adoption is discussed.

1.6 Research focus and boundaries

This research puts focus on the interaction between the prices on a day-ahead spot market and smart 
charging. For this reason, the sub questions focus on the pricing method on day-ahead spot markets, the 
process of smart charging based on price optimisation and the translation of charging demand on the 
demand on spot markets. 

This research does not focus on the prediction of future electricity prices or EV deployment. Predictions on 
fuel prices, CO2 prices, renewable electricity supply and conventional supply are included in the smart 
charging module, but are not claimed to be strongly founded. Predictions about the behaviour of EV owners 
concerning charging is used from the ABCD model. Trends in weather patterns, other storage and demand 
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response technologies and fuel cell electric vehicles (FCEV) are outside the scope of this research. These 
trends are influencing the future prices on  spot markets, but are considered irrelevant for the relation 
between smart charging and a spot markets. 

1.7 Scientific and social contribution

Matching demand and supply in electricity grids of electricity based economies, is currently one of the mayor 
topics in the field of energy science. With growing renewable penetration and EV’s in The Netherlands, smart 
charging might become an important technique to match demand and supply in the future energy system. 
By doing so, smart charging has the potential to play an important role in reducing CO2 emissions. The ABCD 
model with the smart charging module enables a new method to analyse the up and downsides of smart 
charging based on price optimisation. 

For the first time a model is developed that includes the agent-based EV dynamics of neighbourhoods but 
also includes global effects as electricity prices, battery prices and policy effects. As the set-up for the ABCD 
model is agent-based, it is easy to adopt the model to new changes in the Dutch EV environment. This is very 
important in the performance assessment of technologies like smart charging that are so sensitive to small 
changes in price volatilities, charging infrastructure and EV usage. 

Also, simulating smart charging in an agent-based simulation of a neighbourhood will allow to determine 
unforeseen effects of smart charging on neighbourhood level. This supports the discussion between policy 
makers and grid operators on how the future low and medium voltage networks should be maintained and 
developed. 

The social contribution of the ABCD model lies in its application. The model can be used by Dutch policy 
makers to understand the needs of future charging infrastructures. By understanding these needs, better 
decisions can be made in creating regulation and making investments. 

Finally, the analyses of smart charging in terms of costs and impact on LV networks supports grid operators 
and commercial parties in designing a cost effective electricity system. Grid operators can for instance 
compare the cost benefits of smart charging with the costs of new electricity cables. Commercial parties in 
the energy sector can simulate smart charging in future scenarios to analyse the cost benefits of smart 
charging.

End of chapter 1: Introduction
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2 Modelling approach

2.1 Pricing on electricity spot markets

This section elaborates on the first sub question: How to simulate electricity prices on day-ahead spot 
markets? To answer this question, literature research has been done about the economics of day-ahead spot 
markets. This section summarises the relevant findings of this literature study.

Two sided auction model

The mechanism that is used for pricing on the Dutch spot market (EPEX NL day-ahead, former APX) is based 
on the two-side auction model (Drs.ir. M.P.G. Sewalt, 2003; EPEX SPOT, 2016; Roth, Alvin E.; Sotomayor, 1992). 
In a two-sided auction, the suppliers submit “blind” offers and the bidders submit “blind” bids when the 
auction is opened. In this context, blind means that the suppliers and bidders cannot see the actual offers 
and bids of other parties. When the market closes, demand and supply are compared in a so called merit-
order for every hour on the day ahead. This type of price determination is based on the economic theory of 
supply and demand (Geman & Roncoroni, 2006). Fig. 2 shows an example of a merit-order with supply and 
demand curve and their intersection. 

Fig. 2 Merit-order with supply curve, demand curve and their intersection. In the economic theory of supply and 
demand, the intersection of the curves indicates the market price in a two-sided auction model. The constitution of the 
merit-order for determining a spot market price, is referred to as merit-order matching. 

Supply curve based on installed conventional generation capacity and SRMC

The supply curve is typically shaped by the short run marginal costs (SRMC) of the generators that produce 
the suppliers electricity, as indicated by the different levels in the supply curve of Fig. 2. The reason for this is 
that suppliers offer electricity at the lowest price at which they can sell with profit. This price is equal to the 
variable production cost of electricity per unit of time, called the SRMC. 

The SRMC of a specific generator is quite stable and depending on fuel costs, operation and maintenance 
costs, carbon tax costs and sometimes insurance costs. The equation for the SRMC is given by equation (1).

𝑆𝑅𝑀𝐶 =
𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡𝑠

𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 = 𝐹 + 𝐶𝑂2 + 𝑂&𝑀
(1)
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With SRMC in €/MWh, F the fuel costs in €/MWh, CO2 the emission costs in €/MWh, and O&M the operation 
and maintenance costs in €/MWh. For conventional generators like coal and gas plants, this formula is widely 
accepted. 

Apart from the SRMC of the generators the supply curve is determined by the generation capacity that is 
available at a specific moment. In 

Fig. 3 a supply curve is visualised where the X-axis represents the generation capacity and the Y-axis the 
SRMC. This supply curve for the Dutch spot market has been constructed by the research institute ECN 

(Ybema et al., 2012). 

Fig. 3 Indicative merit-order curve for The Netherlands in 2012 made by ECN (Ybema et al., 2012). The SRMC’s of the 
generators determine the height of the points and the generation capacity the horizontal distance between the points. 
The type of generator is indicated in the graph. The new coal generators are market with red triangles and the new 
CCGT’s are market with green squares.

Supply curve based on the relation between demand and spot market prices

During this research a second method for constructing the supply curve is developed and tested. This method 
is based on the correlation between spot market prices and the hourly average electricity demand. These 
two variables show a strong correlation which can be expressed with a function that can serve as supply 
curve. In the remaining part of this report, this supply curve will be referred to as the fitted supply curve.

In Fig. 4 the APX day-ahead prices of 2016 are plotted against the average hourly load of 2016 in The 
Netherlands. Firstly, the hourly load is adjusted to make the data independent of renewable generation. The 
relation between prices and demand needs to be independent from renewables to create a supply curve for 
conventional generators. By subtracting the renewable generation from the total load, the correlation 
between conventional supply and APX prices becomes visible. This relation observed in the data is used to fit 
a supply curve that relates the conventional supply to the electricity prices.

A linear trend can be observed in Fig. 4 between an electrical load of 5000 MWe and 15000 MWe. A linear 
trend line is fitted over this range of prices indicated by the dotted line and equation y1 in the figure. This 
range of loads corresponds to generation by the conventional generators: nuclear, new coal, CCGT and CHP 
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plants. With higher loads, the slope of the relation grows increasingly. In this region the relation between 
prices and demand becomes similar to an exponential function. This load region corresponds to older gas 
generators that only run when demand is exceeding the expected load. To account for this relation an 
exponential component is added to the linear trend y1. The resulting function is indicated by the black line 
and equation y2.

Fig. 4 Supply curve fitted on 2016 APX prices. The blue dots indicate the APX prices depending on the 2016 NL hourly 
demand (Entso-e, 2016; EPEX SPOT, 2016). The equations of the fitted curves are indicated by y1 and y2 in the figure.

2.2 Application of commercial smart charging

This section is dedicated to the second sub question: How will commercial parties apply smart charging based 
on price optimisation in The Netherlands? The method used to examine this question is to conduct interviews 
with experts in the field of e-mobility and demand response applications. The main conclusions of the 
interviews are also presented in this section.

Interviewing experts about smart charging based on price optimisation

Currently, there is no consensus about how smart charging will be applied by commercial parties. Pioneers 
in the e-mobility sector have the best understanding of the latest developments in smart charging and are 
therefore interviewed for this research. Although this approach does not ensure that the simulation of smart 
charging will be realistic, the interviews give ground to some of the decisions that are made for the 
development of the smart charging module.

Three experts from different organisations are interviewed about their vision on the implementation of smart 
charging in the Dutch charging infrastructure. These experts are:

1. Stan Janssen from ElaadNL, smart charging software expert
2. Auke Hoekstra from ElaadNL, Alliander and TU/e, e-mobility expert (Hoekstra, 2017)
3. Derek de Rie from Senfal, demand response software expert (De Rie, 2017)

Stan Janssen is an in-house programmer at ElaadNL. One of his roles inside the organisation is to research 
the opportunities for smart charging in The Netherlands and the software that could be used for this. Auke 
Hoekstra has been involved in the development of e-mobility in The Netherlands for over 20 years. As head 
of the ABCD project he is also giving his vision on the implementation of smart charging in The Netherlands. 
Derek de Rie has been designing commercial demand response software for Senfal and also has experience 
with smart charging. 
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Interview questions

To understand what the requirements are for a proper simulation of smart charging, there are three 
processes that need to be examined. These processes are the communication between the aggregator and 
EV owner, the process of buying electricity on the spot market by the aggregator and the process of charging 
the EV’s. The following three questions focus on these processes and are used for the interviews:

1. How will the charging requirements of the EV owner be communicated to the aggregator?
2. How does the aggregator determine the amount of electricity that is needed for charging EVs the 

following day?
3. How will the aggregator determine optimal charging times using spot market prices?

Communication of charging requirements of EV owner to aggregator

The charging requirements of the EV owner need to be communicated at the moment the owner plugs in the 
EV into the charging station. The most probably channel of communication will be a smart phone application 
of the aggregator. This application should be able to communicate the amount of kWh that the user wants 
to charge and the timeframe in which this charge session can take place.

Currently, there is one commercial party in the Netherlands that applies smart charging based on price 
optimisation called Jedlix (Jedlix, 2017). They work with a smart phone application that enables the 
communication between them and the EV owner. At the moment the EV owner plugs in his EV the aggregator 
will know what the constraints are for using the EV battery for smart charging. Jedlix can decide when the 
battery will be charged and how fast this will happen, without violating the user constraints. The user 
interface of the application is shown in Fig. 5.

Fig. 5 This is the smart charging application of Jedlix, a start-up that tries to commercialise smart charging in The 
Netherlands (Jedlix, 2017). This application is an example of the way of communication between the EV owner and the 
aggregator. In this application the state of charge of the EV battery is displayed. The user can set the time of leaving, 
the amount of kWh that he wants and he has the opportunity to switch off smart charging completely. 

Predicting the amount of electricity needed for charging

As for all electricity suppliers, the aggregator needs to balance its electricity portfolio. The electricity portfolio 
is the balance of the amount of electricity that a party buys and the amount that it actually uses. The 
aggregator does not need to be a balance responsible party (BRP, the legal entity that is responsible for 
balancing demanded electrical energy and actual used energy), but smart charging can only be profitable 
when the actual charged electricity is matching the electricity bought. This implies that the more information 
you have about the demanded electricity for the day ahead, the better your buying decisions1 will be. 

1 Buying decisions are based on the EPEX Index that can be accessed on the online platform of EPEX day-ahead NL. On the EPEX 
day-ahead market the suppliers and bidders are informed about the current status of the auction via the EPEX Index. The EPEX 
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The aggregator needs to make a prediction of the charging behaviour by analysing historical behaviour of his 
pool of customers. This can be done by implementing a learning algorithm that compares historical 
consumption data of the customers and produces a prediction of the consumption for the following day. 
Bigger pools of EV’s have a more predictable charging behaviour than smaller pools. This is due to the 
statistical affect called the law of large numbers (Tversky & Kahneman, 1971). Therefore, parties that will 
commercialise smart charging will try to control large pools of charge points, to optimise their buying 
decisions.

Determining optimal charging times using spot market prices

It is concluded that the aggregator will optimise the smart charge sessions on his own portfolio purchases. 
When the actual charge session takes place, the aggregator already has a portfolio of purchased electricity. 
To balance his portfolio as much as possible the aggregator will try to match the charged electricity with the 
purchased electricity. This will minimise balancing costs and maximise profit. 

When there are charge sessions that require more electricity than is available in the portfolio, the aggregator 
cannot optimise the charge sessions on the portfolio. In this case the aggregator can choose to charge in the 
hours with the lowest spot market prices. This way the portfolio becomes adaptive to unpredictable charging 
behaviour and changes in spot market price characteristics.

2.3 Increased demand on spot market due to charging

This section is dedicated to the third sub question: How can the increase in spot market demand due to 
charging be estimated?

Due to the increase in EV’s in The Netherlands, the electricity demand will increase depending on the charging 
behaviour of the drivers. Because the ABCD model is simulating the charging behaviour of EV owner, the 
model is suited to simulate the demand increase on spot markets. To determine this shift in demand, 

The charging load with and without smart charging is simulated with the ABCD model in neighbourhoods. 
This charging demand could be translated to a change in national demand with the right translation 
algorithm.

There are two differences between the charging demand in a neighbourhood and the charging demand for 
The Netherlands. Firstly, the amount of kWh charged needs to be scaled depending on the ratio of amount 
of cars in the neighbourhood and the amount of cars in The Netherlands. Second, the charging demand in 
the neighbourhood will have more variation than the charging demand of The Netherlands due to the 
statistical effect of larger numbers. 

Instead of simulating a large group of EV’s, this statistical effect can also be estimated by taking the average 
charging demand of a smaller group of EV’s over multiple days. After a representative charging demand has 
been created, the demand can be scaled with a multiplication factor.

End of chapter 2: Modelling Approach 

Index is a time average price index to serve market players and can be used as a reference price for spot electricity (EPEX SPOT, 
2016).
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3 Model development
This chapter elaborates on the development of the smart charging module. As was mentioned in the 
introduction, the module is divided into three boxes that correspond to the three sub questions. This chapter 
follows the structure of the module boxes. All the programming is performed in GAMA.

3.1 Box 1: electricity spot market

BOX 1 simulates spot market prices that can be used for smart charging. Fig. 6 shows a flowchart of BOX 1 of 
the smart charging module. Firstly, a supply curve is constructed in BOX 1, as indicated by the flowchart.  The 
two methods to construct a supply curve discussed in chapter 2 are used in the smart charging module. The 
user of the ABCD model can choose which of the two methods is used for the price calculations.  Secondly, 
the intersection of the supply and demand is determined in the smart charging module.

The electricity supply and demand of the generators are inputs of BOX 1 and these parameters can be 
changed depending on the scenario preferences of the user. The spot market prices will be calculated for the 
day ahead in the model simulation, similar to the price index on a day-ahead spot market. Like a day-ahead 
market, the market opens at 00:00 every day and closes at 23:59. When the market is opened, the spot market 
prices for the next day and the current day are accessible in the simulation.

Fig. 6 Flowchart of BOX 1 of the smart charging module. The module generates spot market prices with the inputs 
renewable supply, conventional supply and spot market demand. The renewable supply and conventional demand are 
used to construct a supply curve. Thereafter, the intersection is found between the supply curve and the electricity 
demand in a specific hour. The intersection price is the price of electricity in that specific hour.

Supply curve based on installed conventional generation capacity and SRMC

The SRMC of coal plants, CCGT, CHP and older gas plants are calculated in BOX 1 using the CO2 prices, coal 
prices and gas prices. O&M costs are considered insignificant and are therefore not taken into account. The 
SRMC data is gathered from ECN from 2016 until 2035 (Schoots, Hekkenberg, and Hammingh 2016). The 
SRMC of nuclear and renewables are considered constant because uranium prices vary less and short run 
marginal costs of renewables are nearly zero. Also, the electricity prices are nearly never depending on these 
SRMC, because this only happens in hours with extremely low demand in the coming years. The data is also 
gathered from ECN (Seebregts et al. 2009a). The cost curves from 2016 until 2035 can be found in Appendix 
8.2.
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For some generator types the SRMC per generator varies a lot. For instance the SRMC of gas turbines is very 
dependent on how old and how big the turbine is. To take this into account, the highest SRMC and the lowest 
SRMC of these generator types are calculated. The SRMC of the generators in between are estimated by linear 
interpolation between these lowest and highest SRMC. 

The supply capacities of the conventional generators are gathered from ECN as well (Seebregts et al. 2009b; 
Ybema et al. 2012). The renewable supply is calculated by multiplying hourly average weather data of the 
KNMI (KNMI 2016) with the installed capacities of wind and PV according to equations (2), (3) and (4). It is 
assumed that rated power is reached at 80% of the maximum measured wind speeds.

:𝑖𝑓 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 10𝑚𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 < 0.8

 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑤𝑖𝑛𝑑 = 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 10𝑚𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 ∗  𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑐𝑎𝑝𝑤𝑖𝑛𝑑 (2)

:𝑖𝑓 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 10𝑚𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 ≥ 0.8

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑤𝑖𝑛𝑑 = 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑐𝑎𝑝𝑤𝑖𝑛𝑑 (3)

Where wind speed 10mnormalised is the KNMI hourly average measured wind speed in De Bild at 10 meters height 
normalised, the productionwind the hourly wind production and the installed capwind the installed capacities for 
onshore and offshore wind. For PV production we have:
 

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑃𝑉 =  𝑠𝑜𝑙𝑎𝑟 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 ∗ 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑐𝑎𝑝𝑃𝑉 (4)

Where solar irradiancenormalised is the KNMI hourly average measured solar irradiance in De Bild normalised, 
the productionPV the hourly PV production and the installed capPV the installed capacities for PV in The 
Netherlands.

For renewable supply the installed capacities are assumed to be the same as the renewable energy targets 
as stated by the Dutch government (Schoots, Hekkenberg, and Hammingh 2016). All the installed capacities 
from 2016 until 2035 that are gathered are shown in Table 3 in Appendix 8.3. 

Supply curve based on relation between demand and spot market prices

As was mentioned in chapter 2 there is both a linear trend as an exponential trend defined for the relation 
between conventional supply and electricity prices. The relation between the spot market prices and the 
conventional supply is depending on the SRMC and supply capacities of generators. To make the supply more 
adaptive to changing SRMC and supply capacities, the constants in the equations can be replaced by functions 
that depend on the SRMC and supply capacity that is available. 

Equation (6), (5) and (7) show the functions that are used in BOX 1 as fitted supply curve. Equation y1 is the 
fitted linear trend for conventional supply, y2 the exponential trend that compensates for expensive gas 
turbines with market power and y3 is the function for renewable and coal supply.

And for demand > RENEWABLE + COAL:

𝑦1 =  
(𝑆𝑅𝑀𝐶𝐶𝐻𝑃 ‒ 𝑆𝑅𝑀𝐶𝑛𝑒𝑤 𝑐𝑜𝑎𝑙)

(𝐶𝐶𝐺𝑇 + 𝐶𝐻𝑃) ∗ (𝑑𝑒𝑚𝑎𝑛𝑑 ‒ 𝑅𝐸𝑁𝑊𝐴𝐵𝐿𝐸) ‒ 9.72 (5)

𝑃𝑅𝐼𝐶𝐸 =  𝑦2 =  𝑒(0.0008 ∗ (𝑑𝑒𝑚𝑎𝑛𝑑 ‒ (𝑅𝐸𝑁𝐸𝑊𝐴𝐵𝐿𝐸 + 𝐶𝑂𝐴𝐿 + 𝐶𝐶𝐺𝑇 + 𝐶𝐻𝑃)) + 𝑦1 (6)
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And for demand ≤ RENEWABLE + COAL:

Where PRICE (€/MWh) is the spot market price for a specific hour, y1 the fitted linear function, y2 is the fitted 
exponential function, demand the spot market demand, RENEWABLE the renewable supply on the spot 
market, COAL the coal supply on the spot market, CCGT the CCGT supply and CHP the CHP supply. The SRMCs 
are the short run marginal costs for the generators. All the production is in units of MWe and SRMC are in 
units of €/MWh. The functions y1, y2 and y3 are plotted in Fig. 7.

The function y2 is only defined for conventional generation from CCGT until old gas turbines. As can be 
observed in the equations, the function is shifted over the X-axis depending on the amount of renewable and 
coal supply. Function y3 is defined for renewable and coal generation. The function is adjusting its slope when 
renewable and coal supply is changing so that y2 = y1 at demand = RENEWABLE + COAL. 

The combination of the fitted curve y2 for conventional generation and the flexible curve y3 for renewable 
generation makes it possible to predict spot market prices with changing renewable generation. Currently, 
y3 is also defined for coal supply and thus not completely depending on renewable supply. The reason for 
this is that the function y2 would become negative for coal supply, which is not a valid SRMC of coal. The 
discussion elaborates further on this issue.

Fig. 7 The APX day-ahead prices plotted against the hourly demand with the 3 equations that constitute the supply 
curve. In this case there is no renewable supply, which would shift the trends to the right side. Equation Y2 is used as 
supply curve for conventional supply and Y3 for renewable supply and new coal generation. 

𝑃𝑅𝐼𝐶𝐸 =  𝑦3 =  
(𝑆𝑅𝑀𝐶𝑛𝑒𝑤 𝑐𝑜𝑎𝑙)

(𝑅𝐸𝑁𝐸𝑊𝐴𝐵𝐿𝐸 + 𝐶𝑂𝐴𝐿) ∗ 𝑑𝑒𝑚𝑎𝑛𝑑 (7)



Contribution of smart charging to balance supply and demand on electricity spot markets | 19 

3.2 BOX 2: smart charging

BOX 2 of the smart charging module is communicating with the charge points in the ABCD simulations to 
enable smart charging. 
Fig. 8 shows a flowchart of BOX 2. The electricity prices of BOX 1 are used to create optimal charge schedules 
which are send to the charge points. An agent called “aggregator” is created in GAMA to perform the 
calculations. 

Fig. 8 BOX 2 of the smart charging module. The BOX is constructed out of two main parts, the top part is making 
optimised charge schedules and the bottom part is buying electricity for charging based on expected charging demand. 

When an EV is connected to a smart charge point in the neighbourhood, the charge point will collect the 
charging constraints from the EV owner. The charging constraints are the charge need (amount of kWh that 
need to be charged), charge speed (in kW) and the time frame in which he wants to charge (the current time 
and the time he wants the EV to be ready). The charge point sends the charging constraints to the aggregator 
which will make an optimal charge schedule for the EV.

Creating optimal charge schedules

The top component depicted in 
Fig. 8 is responsible for creating optimal charge schedules for the EVs in the simulation. Ones the charging 
constraints of the charge session are send to the aggregator by the charge points, the aggregator can perform 
the optimisation. 

The optimisation can be performed on the portfolio of the aggregator or on the spot market prices, as was 
explained in chapter 2. In first instance, the electricity that is bought by the aggregator is used for the 
optimisation. If there is no electricity left over on the account of the aggregator, the optimisation will be 
performed with the spot market prices of the current day. 

Fig. 9 shows an example of an optimisation using both the bought electricity and the electricity prices as 
optimisation vector. In every iteration, the most optimal hour is chosen to fill the charge schedule. In the first 
case, the optimal hour is defined by the hour where the most kWh are on the account of the aggregator. In 
the second case, the optimal hour is defined by the cheapest hour in the time frame of the charge session. 
The optimisation ends when either the charge need is satisfied, the whole charge schedule is full or the EV is 
disconnected from the charge point. 



Contribution of smart charging to balance supply and demand on electricity spot markets | 20 

Fig. 9 Example optimisation as performed by the algorithm used in BOX 2 of the smart charging module. The amount 
of iterations depends on the length of the charge sessions and the charge requirements of the EV owner.

Buy electricity based on expected charging demand  

As depicted in 
Fig. 8, the second component of BOX 2 is calculating expected charging demand and buying electricity for the 
day ahead. As was explained in chapter 2, the aggregator needs to make a prediction on how much kWh will 
be needed for the charge sessions of the following day. The expected charging load is calculated with a serial 
weighted average as is formulated by equation (8).

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑜𝑎𝑑𝑑𝑎𝑦_𝑖 =
𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑜𝑎𝑑𝑑𝑎𝑦𝑖 ‒ 1 +  𝑡𝑜𝑑𝑎𝑦𝑠 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 𝑑𝑒𝑚𝑎𝑛𝑑

𝑤𝑒𝑖𝑔ℎ𝑡 + 1
(8)

Where expected load (kWh) is the array with the expected charging load for every hour of the day ahead, day_i 
is the current day, weight is a constant chosen by the modeller that determines the weight of the historical 
charging demand and todays charging demand (kWh) is the array with the charging demand for every hour of 
the current day.

The amounts of kWh indicated by the expected charging load array are directly bought from the spot market. 
This is process is repeated every midnight in the simulation to update the kWh that are on the account of the 
aggregator that can be used for smart charging. The charging costs are also calculated taking the sum of the 
components of the buying array.
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3.3 BOX 3: demand shift due to charging

As discussed in section 2.3, the load shift is depending on two factors. Firstly, a load curve of a representative 
group of EV users in The Netherlands. Secondly, a scaling factor depending on the ratio between the amount 
of cars in The Netherlands and the amount of cars in the neighbourhood. This relationship is expressed by 
equation (8).

𝐷𝑒𝑚𝑎𝑛𝑑 𝑠ℎ𝑖𝑓𝑡 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑎𝑑 𝑐𝑢𝑟𝑣𝑒 ∗ 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 (8)

Where the demand shift is a vector with 24 elements in kWh for every day of simulation, the average load curve 
also a vector with 24 elements in kWh for every day of simulation and the scaling factor a ratio. 

The weighted average load curve of the ABCD simulation is used as average load curve. The weighted average 
load curve is calculated using equation (9) in the previous section. The scaling factor is calculated according 
to equation (9). Currently, the amount of cars in The Netherlands is approximately 8 million. The average 
neighbourhood has 500 cars which makes the order of the scaling factor approximately 104. 

𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑎𝑟𝑠 𝑖𝑛 𝑁𝐿

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑐𝑎𝑟𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟ℎ𝑜𝑜𝑑
(9)

End of chapter 3: Model Development
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4 Model validation
The validity of the model is examined by relating the outputs the module boxes to their inputs in scenario 
analyses for every module box. Some of the results can be compared to literature to examine the validity. 
The analysis setup is discussed, the analysis results are presented and the results are discussed. 

4.1 BOX 1 validation

Firstly, prices calculated with both the methods used to construct BOX 1 are compared with the 2016 APX 
day-ahead prices. There are two measures that are compared: (1) the average price per hour and (2) the root 
mean squared error (RMS) of the price curves relatively compared to their own average price. The average 
RMS is a measure for the volatility of the price curves. It is calculated by taking the average of the distances 
between every point and the daily average price, as indicated by equation . 

𝑅𝑀𝑆 =
1
𝑁

𝑁

∑
𝑖 = 0

(𝑑𝑎𝑖𝑙𝑦 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑖𝑐𝑒𝑖 ‒ 𝑝𝑟𝑖𝑐𝑒𝑖)2
(10)

Where N is the amount of hours in a year, pricei is the price in the ith hour  and the daily average pricei is the 
average price of the corresponding day. The average price per hour and the volatility are the most influential 
parameters for smart charging of the price curves.

The simulations are run over the whole year of 2016. Hourly average data of supply and demand are used 
from the year 2016. Thereafter, 2025 spot market prices are simulated with the fitted supply. This allows to 
examine the influence of changing supply on the generated day-ahead prices by BOX 1. Detailed information 
about the installed capacities, SRMC and spot market demand data can be found in Appendix 8.2, 8.3 and 
8.4.

Validating 2016 spot market prices and analysing 2025 prices

Fig. 10 shows the average spot market prices for the APX 2016 day-ahead market, 2016 simulated prices with 
the ECN supply curve, 2016 simulated prices with the fitted supply curve and 2025 simulated prices with the 
fitted supply curve. Also, the average RMS values of the price curves are indicated in the legend of the figure. 

Fig. 10 Electricity prices generated by BOX 1 compared to the real APX prices in 2016 and 2025 prices generated with 
the fitted supply curve. The volatility of the curves is expressed in their average RMS value that is displayed in the legend. 
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The 2016 prices generated with the ECN supply curve shows peak and valley prices during the same hours 
as the APX price curve. However, on average the prices are lower than the APX prices and show less volatile 
behaviour over the day. Apparently, the slope of the ECN supply curve is not steep enough, which implies 
that there is too much generation capacity available. This makes sense if one notes that the ECN supply curve 
is constructed with all the Dutch installed generation capacity, while not all generated electricity is traded on 
the spot market. The fitted supply curve is constructed to improve the simulated prices with BOX 1.

The average of the 2016 prices generated with the fitted supply curve and the APX prices are exactly the 
same. This is not surprising, because the fitted supply curve is fitted on the 2016 prices. The biggest difference 
between the curves is observed around midday were the volatility of the APX prices in higher than the 
simulated prices. This effect could be related to the characteristics of steam turbines. Because starting up or 
ramping up is more costly than stable generation, the SRMC of these generators might drop slightly during 
midday. Also, the variation in air temperature during the year increases the variation in efficiencies of 
generators and therefore also SRMCs. This is not taken into account in the fitted supply curve. 

The 2025 prices generated with the fitted supply curve are on average lower than the 2016 prices. This is due 
to more renewable generation and the prediction that there will still be coal generation available in this year. 
If this prediction is true it means that expensive gas generators will be pushed out of the merit-order and 
prices are mostly determined by cheaper coal generation. However, the volatility of the curve increases 
compared to the 2016 prices, mostly because of the intermittent characteristic of renewable generation. 

4.2 BOX 2 validation

To validate BOX 2, six scenarios are compared with two baseline scenarios as presented in Fig. 11. In the 
scenarios, one input is changed compared to the baseline scenario to analyse the independent effect of the 
variable. The impact of more EV, more renewables and a different season are assessed. The impact of more 
EV is mostly influencing the load on the grid. More renewables and different seasons determine the spot 
market prices. Therefore they determine the cost effectiveness and the interaction between renewable 
generation and smart charging. All the scenarios are run for both normal charging as smart charging, to be 
able to see the effect of smart charging. 

Fig. 11 Eight scenarios used for the validation of BOX 2. The top scenarios are with smart charging and the bottom 
scenarios are with normal charging to compare the relative impact of smart charging on the outputs. To see the 
influence of the prices and the amount of EV on the outputs of BOX 2 the amount of EVs is varied from 5% to 20% and 
the amount of renewables is varied from 22% to 51% installed capacity. Also, to see the difference between seasons, 
the most right scenarios are run with demand and renewable generation adapted to the summer instead of winter.
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To see the influence of the amount of EVs in the neighbourhood, the percentage households with and EV is 
varied from 5% to 20% in the neighbourhood (2017 and 2025 percentages predicted by the ABCD model). 
These percentages resemble the percentage of households with an EV in the neighbourhood. The amount of 
commuters working in the neighbourhood is assumed to be the same. 

To see the influence of the prices on the outputs of BOX 2 the amount of renewables is varied from 22% to 
51% installed capacity. These percentages resemble the amount of renewables in The Netherlands in 2017 
and 2025, predicted by ECN (Schoots, Hekkenberg, and Hammingh 2016). And lastly, to see the difference 
between seasons, the most right scenarios are run with demand and renewable generation data 
corresponding to the summer instead of winter.

The amount of charge points in the neighbourhood is automatically adjusted for the amount of EVs. It is 
assumed that every resident that owns an EV gets either a charge point at home or a public charge point near 
his house. The public charge points that are installed in the neighbourhood can also be used by the 
commuters. The amount of work charge points at the offices is depending on the amount of commuters that 
work in the neighbourhood.

The neighbourhood that is used for the scenario analyses is the Zeeheldenkwartier neighbourhood in The 
Hague. Only weekdays are simulated in the scenarios over 30 days in one specific season. This implies that 
the spot market demand resembles the demand of weekdays and the wind and PV production is depending 
on weather data from corresponding dates in 2016. Also, the residents and commuters are going to work 
every day. Some residents might make evening trips with a probability of 30%. Detailed information about 
the installed capacities, SRMC and spot market demand data can be found in Appendix 8.2, 8.3 and 8.4.

Average electricity prices in simulations

Fig. 12 shows the average electricity prices for the scenarios. Because the amount of EVs and smart charging 
are not influencing the spot market prices, there are three different price curves presented. The most 
important difference between the price curves is their volatility, which is influencing the smart charging costs 
for a major part. The peak prices and valley prices are nearly in the same hours, which means that the times 
of smart charging will be comparable. 

Charging load on the local grid 

The load on the local grid is presented as an hourly average in Fig. 13. The scenarios with 5% EVs have nearly 
the same charging load of around 100 kWh and show similar charging behaviour over the day. In the 
scenarios with 20% EV the charging load is around 400 kWh (4 times higher), which corresponds to the 
increase in EVs. The charging behaviour also changes in the normal charging scenario, because commuters 
charge relatively more at work during the morning.

In the normal charging scenarios the residents charge when they arrive home from work in the late afternoon 
and the commuters charge when they arrive at work in the morning. The average time residents arrive at 
home is 16:30 in these scenarios, which is defined in the ABCD model as the arrival time. The peak loads are 
therefore depending on the times that the people are working and there is little demand during the night.
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Fig. 12 Average electricity prices using the fitted supply curve for a summer with 22% renewables, a winter with 22% 
renewables and a winter with 51% renewables. The amount of renewables is expressed as percentage installed capacity 
and based on ECN predictions for 2017 and 2025. The volatility of the price curves is expressed in average RMS values 
in the legend. In the “summer 22%” and the “winter 51%” the average price lies around 28 €/MWh. In the “winter 22%” 
the average price lies around 35 €/MWh. The volatility is the lowest for the “summer 22%” and the highest for the 
‘winter 51%”.

Fig. 13 Average local charging load in neighbourhood over one day in eight different scenarios. The scenarios with 5% 
EVs have nearly the same charging load of around 100 kWh and show similar charging behaviour over the day. In the 
scenarios with 20% EV the charging load is 4 times higher, which corresponds to the increase in EVs.
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In the smart charging scenarios the charging load shifts mostly to midnight, because the price curves have a 
minimum during the night. Some of the load is also shifted to the midday, when the price curves have a local 
minimum. These charge sessions correspond to commuters that are smart charging during work hours. One 
would expect more charging load during these sessions, but due to a bug in the ABCD model at this moment, 
the commuters stop charging during work hours before they should. Also, one would expect to see a load 
peak for smart charging at 4:00 and not at 00:00. The reason for this is a bug in the buying module. The 
discussion elaborates on these problems.

Charging costs 

The average charging costs per day for the eight scenarios are presented in Fig. 14. Also, the total savings 
over the month by applying smart charging compared to the normal charging scenarios is presented in the 
graphs. The first four days of the simulation are not taken into account in the calculation for the cost savings, 
because the expected charging demand needs four days to become a good prediction. 

It can be observed that the charging costs in the normal charging scenarios are higher than the charging 
costs in the smart charging scenarios. This is expected because the charge sessions in the smart charging 
scenarios are mostly during the night when electricity prices are lower. The difference between the costs of 
bough electricity and charged electricity in the smart charging scenarios is minor and the average costs are 
nearly the same. The difference between the two becomes smaller with more EVs, which shows that more 
EVs make it easier to predict the correct charging load for the next day. Also, the variation in charging costs 
becomes smaller with more EVs.

The savings in the summer are significantly less than the savings during the winter. This can be explained by 
the difference in price volatility during these seasons. The low volatile summer makes smart charging less 
effective for decreasing charging costs. 

A striking result is that the savings barely increase with more renewables. This implies that the amount of 
renewables does not influence the savings that much, although the volatility of the price curve with 51% 
renewables is significantly more volatile than with 22% renewables. One would expect volatility to be the 
main driver for savings made by smart charging. The reason for this striking result could be that the 
aggregator in the smart charging module does not make optimal buying decisions, which reduces the savings 
that can be made with smart charging.

Renewable electricity charged

The percentages of renewable charged electricity in the eight scenarios are presented per generator in Fig. 
15. The division makes it possible to see the partial contribution of the generators to renewable charged 
electricity. The relative change in renewable charged electricity between the normal charging scenarios and 
the smart charging scenarios is also presented in the graphs.

In the winter scenarios, more renewable electricity is charged with smart charging. This effect is mostly due 
to charging more wind energy, because the PV production is minor in the winter months. An increase in EVs 
has a minor influence on the amount of renewable charged electricity, except PV is charged more in the 
normal charging scenario by charging at work. The percentages renewable charged electricity in the scenarios 
with 51% renewables are higher, but the total increase in renewable charged electricity is similar to the other 
winter scenarios. 
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Fig. 14 Daily charging costs for the month of simulation in the eight different scenarios. For smart charging the costs 
for bought electricity and the cost of charged electricity are displayed. It shows the difference in the expected charging 
demand and the actual charged electricity. The savings are calculated by comparing the costs for bought electricity 
with the normal charging costs.
 

Fig. 15 Percentage renewable charged electricity per generator and for the total renewable generation. The 
percentages indicate the change in the total amount of renewable electricity charged from the normal charging 
scenarios to the smart charging scenarios. 
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For the summer scenario, the percentages renewable charged electricity are lower with smart charging. 
Although this result is striking, it can be explained in two steps. Firstly, due to a big in the ABCD model, 
commuters do not charge as much at work as they should (elaboration in the discussion). Therefore, less 
electricity is smart charged during midday when the sun shines.

Secondly, both PV production and wind production are higher during the day compared to the night. For PV 
production this is a straightforward statement, but for wind energy it is not. However, the results imply that 
wind energy is correlated to the time of the day. This effect can be explained by looking at the relations 
between average wind speeds, time of the day and height in Fig. 16 (following section). The wind speeds 
measured on 10 m above ground are higher during the day. The KNMI data that is used is measured at a 
height of 10 meters and shows the same trend as in Fig. 16. 

Wind production is more likely to be higher during the night because the hub heights of wind turbines are 
above 70 meters. Thus, if the correct wind production would be used, more wind energy would be charged 
with smart charging, compared to the current results.

4.3 BOX 3 validation

The scenarios used to validate BOX 3 are based on 5 questions that are currently relevant issues for different 
stakeholders. Therefore, this scenario analyses can be used to validate BOX 3, but also to give insight into the 
application of the smart charging module. The 5 stakeholder questions that are answered with the scenario 
analysis of BOX 3 are:

Electricity supplier: How much charging load in the neighbourhood is flexible due to smart charging?
Local grid operator: When do load peaks occur and how high are these load peaks in the neighbourhood 
when smart charging is applied?
EV owner: With what percentage are the charging costs reduced when smart charging is applied?
Dutch government: What is the percentage increase in charged renewables when smart charging is applied?
Energy investor: What is the percentage increase in revenue for renewable generated electricity sold on the 
day-ahead spot market when smart charging is applied?

The four scenarios that are constructed to answer these questions for the years 2017 and 2025 are presented 
in 
Fig. 17. The top two scenarios are with smart charging and the bottom scenarios are with normal charging. 
The left scenarios are a 2017 case and the right scenarios are a 2025 case with more EVs and renewable 
generation. Similar to the validation of BOX 2 the percentage EV is the percentage of households with an EV. 
The percentage renewables is the percentage installed capacity in The Netherlands. The amount of 
commuters working inside the neighbourhood is similar to the amount of residents with an EV. Detailed 
information about the installed capacities, SRMC and spot market demand data can be found in Appendix 
8.2, 8.3 and 8.4.

To validate BOX 3, the results of the scenarios are linked to the inputs. The most important results that 
validate BOX 3 are the demand shift on national due to charging and the change in spot market prices. The 
two inputs that have the largest impact on these results are the price curve volatility and the percentage of 
EVs. Therefore, the defined scenarios can also be used for the validation of BOX 3. 
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Fig. 16 Average wind speeds during the day on different heights (Kelley and Ennis 2016).

Fig. 17 Scenario quadrants for the scenario analysis of BOX 3. On the bottom the normal charging scenarios are 
presented where only normal charging is applied in the neighbourhood. On the scenarios on the top all the charge 
sessions are performed with smart charging. In the left scenarios the amount of EVs and renewables are related to a 
2017 case. In the right scenarios the amount of EVs and renewables are related to a 2025 case. The percentages of 
renewables are installed capacities.
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Average spot market prices

Fig. 18 shows the average market prices for the scenario quadrants compared to the average prices 
generated without influence of EV charging. The average prices in 2017 are higher than the average prices in 
2025 due to more renewable production. The higher renewable production is also increasing the volatility of 
the price curves from 2017 to 2025.

The impact of EV charging demand on the spot market prices can be observed by comparing the coloured 
lines with the black line. EV demand is increasing the price in all scenarios. However, in the normal charging 
scenarios the peak prices increase and in the smart charging scenarios the valley prices increase. The increase 
in peak prices is already visible in the 2017 normal charging scenario, where the peak price increases from 
57 €/MWh to 65 €/MWh. In 2025 the influence of EV charging has a major impact with peak prices increasing 
over 25%. 

The increase in prices in the smart charging scenarios is lower than the increase in the normal charging 
scenarios. Therefore, the average prices with smart charging are lower than with normal charging. In 2017 
the average price decreases with 1.4% and in 2025 with 5.6% with smart charging. This effect is caused by the 
non-linear relationship between price and demand used in BOX 1. At times of low demand and high 
renewable generation, the slope of the supply curve is low. At times of high demand and low renewable 
generation, the slope of the supply curve is steep.

Load on the local grid in Zeeheldenkwartier, The Hague

The load on the local grid is presented as an hourly average in Fig. 19. The average load for 200 households 
is plotted in the graphs to see the relative impact of EV charging on the load in the neighbourhood. Also, the 
average amount of shifted load per day is presented. 

The relative increase of the load in 2017 is minor and will not worry grid operators to much. However, in 2025 
the peak load in the normal charging scenario increases from 160 kW to 220 kW, which is a significant 
increase. When smart charging is applied both in 2017 and 2025 the peak load is not changing. However, 
when more than 30% of households have an EV, smart charging can create a new load peak during the night, 
because the spot market prices are lowest during the night.

The total amount of load that can be shifted on average per day in 2017 is 3.7% of the total load on the local 
grid. In 2025 this is 11.6% on average per day. This is more than 90% of the total charging load per day, which 
indicates an enormous flexibility in charging. This confirms the potential to use smart charging for electricity 
suppliers to balance their electricity portfolios.

Demand shift on national level due to charging

These results show the effect of BOX 3 on the spot market demand. Fig. 20 shows the average demand shift 
on national level for the four scenario quadrants. The hourly average demand of 2016 is also plotted to 
compare the impact of EVs on the national demand. 

In 2017 the average demand increase per hour is 1.2% and in 2025 it is 4.2%, which shows that EV have a 
marginal impact on the national demand. The difference between 2017 and 2025 can be explained by the 
increase of EV’s from 5% to 20%. The most important difference between the normal charging scenarios and 
the smart charging scenarios is that the demand increase in the normal charging scenarios increases the 
peak demands, while in the smart charging scenarios only the valley demand is increased. This is the same 
difference that was observed in the local charging load of Fig. 13. 
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Fig. 18 Average market prices for the normal charging scenarios, smart charging scenarios and the prices without 
demand shift due to charging. The change in spot market prices due to an increase in charging demand is visible by 
comparing the black line with the coloured lines.

Fig. 19 Average local charging load in neighbourhood over one day. The average load for 200 households is plotted in 
the graphs to see the relative impact of EV charging on the load in the neighbourhood. In 2017 3.7% of the total load 
in the neighbourhood can be shifted on average with smart charging from the late afternoon to the night. In 2025 
11.6% of the total load can be shifted with smart charging. 

Fig. 20 Hourly average demand shift due to charging of EV’s on national level compared with the average demand of 
The Netherlands. In 2017 the average demand increase per hour is 1.2% and in 2025 it is 4.2%. The most important 
difference between the normal scenarios and the smart charging scenarios is that the demand increase in the normal 
charging  scenarios increases the peak demands, while in the smart charging scenarios only the valley demand is 
increased.
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The demand increase that is observed in Fig. 20 is 1600 MW in the peak hours. Comparing this number with 
the increased load on the local network of 40 kW in Fig. 13, the multiplication factor is 1600 MW/40 kW = 
40000. This number is equal to the amount of cars in The Netherlands, divided by the amount of cars in the 
Zeeheldenkwartier; 8000000/200 = 40000.    

Charging costs in Zeeheldenkwartier, The Hague

The average charging costs per day are presented in Fig. 21. The average prices are shown over the whole 
month to show the variation in charging costs over one month. Also, the average percentage that is saved 
and the average savings in €/month per EV by applying smart charging are presented in the graphs. 

An EV owner can save 6.9 €/month on charging costs in 2017 and 5.0 €/month in 2025. These numbers are 
independent of taxes, because taxes are payed per kWh. This shows an interesting business case for 
commercial parties that want to offer smart charging to their clients. It is a striking result that the electricity 
cost savings are going down from 2017 to 2025. This is a different result than the resulting charging costs in 
the validation of BOX 2. However, in the BOX 3 scenarios, smart charging is matching supply and demand on 
the spot market. This is decreasing the volatility of the price curves in Fig. 18, and therefore decreasing the 
savings that can be made by smart charging.

The peak prices on day 13 and 17 that can be observed in the normal scenarios are due to high electricity 
costs during these days. In the smart charging scenarios these high costs are mitigated mostly. The variation 
in charging costs is higher in the 2025 scenarios, which makes sense with more renewable generation.

As can be observed in the resulting electricity prices that are presented in Fig. 18, the volatility in the smart 
charging scenarios is becoming lower from 2017 to 2025. This is due to the charging load that is shifted to 
the low demand hours, which is matching demand and supply. As was stated in the introduction, smart 
charging is matching demand and supply, and stabilising spot market prices. However, this has a negative 
effect on the savings that can be made with smart charging.

Renewable electricity charged in Zeeheldenkwartier, The Hague

The percentages of renewable charged electricity are presented per generator in Fig. 22. The division per 
generator makes it possible to see the partial contribution of the generators. Also, the percentage increase 
in total renewable charged electricity is presented. 

As was expected from the validation of BOX 2, more wind energy is charged in the smart charging scenarios. 
There is nearly no PV charged in 2017, because installed capacity is low and the simulations are performed 
with weather data from December. Again, due to the commuters that are not smart charging during work as 
much as they should, the percentage smart charged PV in 2025 is lower than the normal charging.

As was also explained in the validation of BOX 2, more wind and PV energy could be charged if more 
commuters would charge and correct wind data is available in the model. These adjustments could increase 
the percentage renewable charged electricity by approximately 10%.

What is different from the validation of BOX 2 is that the growth in 2017 is 15% instead of 19%. This difference 
is due to a slight shift in charging load, with a negative impact on the amount of renewable charged electricity. 
This type of variation is considered a random error, depending on the period of simulation. The demand shift 
in national level does not have any significant impact on the percentage renewable charged electricity. 
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Fig. 21 Daily charging costs for one month of simulation. For smart charging the costs for bought electricity is displayed 
as well as the costs for the actual charged electricity. It shows the difference in the expected charging demand and the 
actual charged electricity. The savings are calculated with the costs for bought electricity. In 2017 38% can be saved on 
charging costs with smart charging. In 2025 32% can be saved on electricity costs with smart charging.

Fig. 22 Percentage renewable charged electricity per generator. The total growth in 2017 is 15% when smart charging 
is applied and 18% in 2025. The percentage of PV electricity that is charged is very low, because the weather data used 
for this simulation was of December 2016.

Fig. 23 Average revenues per MWh produced electricity for onshore, offshore, PV, renewable and total production. In 
the 2017 scenarios, the revenues for renewable generators decreases with 0.9% on average and for all the generators 
revenues decrease with an average of 2.1%. In the 2025 scenarios the decrease increases with an average revenue 
decrease of 5.8% for renewables generators and an average revenue decrease of 8.6% for all the generators. The 
decrease is caused by the difference in average spot market prices in the normal charging scenarios and the smart 
charging scenarios.
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Average revenues for renewable generators 

The last result of the validation of BOX 3 is showing the revenues per kWh produced electricity over the period 
of simulation. Fig. 23 shows these revenues for onshore, offshore, PV, renewable and total generation.

Overall, the revenues in 2025 are lower than the revenues in 2017. This is due to the lower average spot 
market prices in 2025 compared to 2017. For PV this effect is strongest, because the prices during midday 
decrease the most. Also, if the smart charging scenarios are compared to the baseline scenarios a decrease 
is observed. This decrease is similarly caused by a decrease in average spot market prices. The results of Fig. 
23 are striking because they imply the opposite of the hypothesis that smart charging can increase the 
revenues of renewable generators.

The positive effect of smart charging on the revenues for renewables can be observed when the revenue 
decrease of renewables is compared to the revenue decrease of total generation. In 2017 the relative 
decrease in revenues is 0.9% for renewables and 2.1% for total supply. Likewise, in 2025 the relative decrease 
in revenues is 5.8% for renewables and 8.6% for total supply. The decrease for renewables is lower than for 
the total supply, because smart charging charges relatively more renewable electricity.

It can be concluded that the decrease in average spot market prices currently has more impact on the 
revenues of renewable generators than the increase in renewable charged electricity from Fig. 22. This might 
be a different result when more commuters are charging during work and better wind data is available.

End of chapter 4: Model Validation
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5 Conclusions for stakeholders
The savings in the summer are significantly less than the savings during the winter. This can be explained by 
the difference in price volatility during these seasons. Currently, the low volatile summer makes smart 
charging less effective for decreasing charging costs. However, when more PV is installed in the future, the 
volatility during the summer might increase which makes smart charging more effective.

The amount of flexible load in the Zeeheldenkwartier with 5% EV is 3.7% of the total load in the 
neighbourhood in 2017. In 2025 this is 11.6% of the total load on average per day. This is more than 90% of 
the total charging load per day, which indicates an enormous flexibility in charging. This confirms the 
potential to use smart charging for electricity suppliers to balance their electricity portfolios.

Smart charging can decrease the load peak on the local grid with 27% when 20% of the households in a 
neighbourhood have an EV. With 5% households with EV , the impact of electric vehicles on the peak load is 
minor. When more than 30% of households have an EV, smart charging can create a new load peak during 
the night, because the spot market prices are lowest during the night.

The charge cost savings induced by smart charging are going down from 2017 to 2025. This effect is 
counterintuitive because there is more renewable generation in 2025. The reason for the decrease in savings 
is that there are more EVs using smart charging in the 2025 scenario. The total benefits increases, but the 
profit is split over more EVs, which decreases the revenue per kWh charged.

Smart charging can increase the percentage of renewable charged electricity in the winter with 18%. This 
percentage is not varying much in different scenarios, but is mostly depending on the season, moments of 
smart charging and weather. Currently, smart charging during midday is not working correctly in the model, 
which could increase the percentage of charged solar energy. Also, improving the onshore and offshore wind 
production data would increase the amount of renewable charged electricity. Also, the buying decisions of 
the aggregator seem to have a negative influence on the amount of renewable charged electricity.

Smart charging is significantly decreasing the volatility and the average of spot market prices. In 2017 the 
RMS for normal charging is 9.5 €/MWh and for smart charging 7.9 €/MWh. In 2025 with normal charging 12.3 
€/MWh and with smart charging 8.9 €/MWh. In 2017 the average price decreases with 1.4% and in 2025 with 
5.6% with smart charging.

The revenues for generators in 2025 are lower than the revenues in 2017. Also, revenues for generators 
decrease when smart charging is applied, but the impact on renewables is less than for conventional 
generators. The average spot market prices have the biggest impact on the revenues. The decrease for 
renewables is lower than for the total supply, because smart charging charges relatively more renewable 
electricity. 

It can be concluded that the decrease in average spot market prices currently has more impact on the 
revenues of renewable generators than the increase in renewable charged electricity. This might be a 
different result when more commuters are charging during work and better wind data is available. Also, with 
an increasing amount of renewables in the electricity network, smart charging is becoming increasingly 
interesting to charge more renewable electricity.
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6 Discussion

6.1 BOX 1: electricity spot market

During the development of BOX 1, spot market pricing appeared to be an extensive subject. The first supply 
curve that was made with the data from ECN did not give the prices comparable with reality. The reason for 
this could be that in The Netherlands not all electricity is traded on the APX spot market. This implies that 
only the supply that is being traded on the APX market should be used to construct the supply curve. This 
would result in a steeper supply curve, and thus, higher price volatilities and a higher price average. Since the 
average price resulting from the ECN supply curve is too low and the volatility of the price curve is too low, 
this seems to be a possible explanation.

The validation of the second method used to construct BOX 1 has an inherent problem. The supply curve for 
the merit-order is depending on the APX prices, and the merit-order is validated with the same APX prices. 
To strengthen both the construction as the validation of this method, demand curves and APX prices from 
different years should be used. In further research, the fitting method used in this research can be applied 
to multiple years. The results can be used to analyse the influence of SRMC, available supply capacity and 
demand on the spot market prices. This can result in better understanding of spot market pricing and better 
estimations for spot market prices.

6.2 BOX 2: smart charging

Currently, BOX 2 does not take into account local grid constraints in the smart charging optimisation. Local 
grid constraints include the line capacities, voltages and the transformer capacities. For the local grid operator 
it would be interesting to assess charging in the neighbourhood with these constraints included. Also, a 
different form of smart charging could analysed, that is optimising on minimum network load rather than 
lowest costs. 

As was mentioned in the BOX 2 validation, the commuters stop with charging at work without reason. This 
decreases the charging demand during midday in the smart charging scenarios. Therefore the amount of 
charged solar energy with smart charging is lower than it could be in reality. To improve the results, the 
driving and charging behaviour of the ABCD model should be checked.

Also, the load peaks in the smart charging scenarios lie around 00:00 while the lowest spot market prices are 
at 4:00. The reason for this is a bug in the smart charging optimisation. Instead of using the most expensive 
hour in a charge session, the first hour of the charge sessions is used twice for charging. Currently, this bug 
is solved, but there was no time left to adjust the results. The difference in results would be that the peak in 
smart charging would shift from 23:00 and 00:00 to 3:00 and 4:00, resulting in lower charging costs and thus 
higher savings.

The KNMI wind data that was used for the wind production calculations is measured at 10 meters height. As 
was shown in Fig. 16 in the validation of BOX 2, the relation between daytime and windspeed is different at 
10 meters height than at the hub height of wind turbines. Therefore, the amount of wind energy that is 
charged in the smart charging scenarios is lower than it could be in reality. To improve the results, the wind 
production data should be checked.
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The buying process does not contribute an essential functionality to the smart charging module, but does 
increase the probability of errors. Also, in future cases with higher renewable penetration, the errors created 
by the buying process become larger, due to the intermittent characteristic of renewable energy. For these 
reasons, the user of the ABCD model could decide to disable this part of BOX 2. By assuming that electricity 
can be bought on the moment of charging, the buying process can be neglected. In this case the user has to 
correct for imperfect buying behaviour of an aggregator to analyse the cost results correctly.

6.3 BOX 3 and smart charging module

The validation of BOX 3 shows some striking results concerning the interaction between smart charging and 
spot market prices. However, one should take into account the fact that the modelling approach used to 
create module BOX 3 is a simplification that is not researched extensively. The results of the validation show 
that the interaction shows interesting dynamics, but in future research the modelling approach of BOX 3 
could be assessed more to improve validity and reliability. 

Another point of discussion that is concerning validity and reliability is the absence of a sensitivity analyses 
to assess the smart charging module. In this research time constraints limited the validation of the smart 
charging module. A sensitivity analyses would strengthen the conclusions that can be drawn with the 
examination of different scenarios. This will increase the value of the ABCD model including the smart 
charging module for stakeholders.

6.4 Other points of discussion

Smart charging is also considered to be used as frequency containment reserve (FCR) for the Dutch 
transmission system operator TenneT. Because FCR only requires a small part of the battery capacity, EV 
batteries can be used for FCR and smart charging based on price optimisation at the same time. This can be 
used to optimise the business case for smart charging and makes it more attractive to use smart charging 
for commercial parties. For further research it would be interesting to assess the possibilities of using FCR in 
combination with smart charging. The ABCD model is well suitable for this analyses if FCR would be added to 
the model.
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8 Appendix

8.1 Overview of the ABCD model

The ABCD model simulates the driving and charging behaviour of residents and commuters in the GIS 
environment of a neighbourhood. People, EVs and charge points are local agents that live in the GIS 
environment, as is shown in Fig. 22. 

Apart from the local agents there are also global agents that are contributing specific features to the ABCD 
simulations. This created two levels, which is referred to as multi-level modelling in literature (Morvan, 2013) 
and is inspired by Multi Level Perspective used in Transition Management (Geels, 2011). The global agents 
are divided into three modules that are presented in Error! Reference source not found.. 

The buying module is creating EVs with specific properties that can be bought by the residents. It contains 
the battery manufacturer that is determining the properties of available battery types.  The car manufacturer 
is making EVs of different classes using the batteries from the battery manufacturer. The car dealer can be 
accessed by the residents and commuters to buy these EVs. Trends in battery prices and drivetrain prices are 
defined with learning curves.

The driving module is creating driving patterns that determine the driving behaviour of the residents. The 
data that is used for the driving module is government data on driving behaviour of Dutch citizens. The 
charging module is creating the charge points in the neighbourhood. A virtual municipality is giving funds to 
the charge point operator to install charge points in the neighbourhood depending on policy incentives. 

Fig. 24 Overview of the ABCD model. The local agents are living inside the GIS environment of the neighbourhood. The 
modules with the global agents are contributing specific functionalities to the ABCD model. 
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8.2 SRMC of generators used for ECN supply curve

Gas and coal price predictions

Coal and gas prices are used to calculate the SRMC of coal and gas generators. To make the spot market 
supply curve adaptive to analyse future scenarios, coal and gas price predictions until 2035 are included in 
BOX 1 of the smart charging module. In BOX 1 growth factors are defined for the increase in coal and gas 
prices over the years. These growth factors are based on ECN predictions of coal and gas prices as is shown 
in Fig. 25.

Fig. 25 gas and coal price predictions by ECN from 2016 to 2035 (Schoots, Hekkenberg, and Hammingh 2016). The 
exponential functions are fitted on the predicted data from ECN and their growth factors are indicated in the graphs.

Carbon tax

The CO2 price is used to calculate the SRMC in module BOX 1. Similar to the predictions in coal and gas prices, 
BOX 1 contains a growth factor for CO2 tax that is used to determine the price for a specific years. This growth 
factor is based on the ECN data that is plotted with the exponential growth function in Fig. 26.

Fig. 26 CO2 price predictions by ECN from 2016 until 2035 (Schoots, Hekkenberg, and Hammingh 2016). The exponential 
function is fitted on the predicted data from ECN and the growth factor is indicated in the graph.
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Properties of conventional generators

The properties of conventional generators presented in Table 1 are used BOX 1 to calculate the SRMC costs 
for the different conventional generators. The coal generators that are defined for the supply curve are the 
old coal generators and the new coal generators. The gas generators that are defined are the old gas turbines, 
the CHPs, the must-run CHPs and the CCGTs. 

Table 1 Properties of conventional generators. 

Variable Value Unit Source
COAL    
HHV 32.5 GJ/tonne (NIST 2017)
CO2 emission factor 2.88 kgCO2/kg (CO2emissiefactoren.nl 2017)
Efficiency new coal 46% J electricity/J coal (Seebregts et al. 2009a)
Efficiency old coal 38% J electricity/J coal (Seebregts and Volkers 2005)
GAS    
HHV 31.65  GJ/1000Nm³ (NIST 2017)
CO2 emission factor 1.788 TonneCO2/1000Nm3 gas (CO2emissiefactoren.nl 2017)
Density natural gas 0.833 tonne gas/1000Nm3 gas (NIST 2017)
Efficiency old gas 38% J elec/ J gas (Seebregts and Volkers 2005) 
Efficiency CHP 50% J elec/ J gas (Seebregts et al. 2009a)
Efficiency CCGT 58% J elec/ J gas (Seebregts et al. 2009a)
Percentage CHP must-run 20% (Seebregts et al. 2009a)

Properties of renewable generators

The SRMC of renewable and nuclear generation is assumed to be constant, because their SRMC are hard to 
determine and are mostly not influencing the spot market prices. The values for onshore, offshore, PV and 
nuclear generation are presented in Table 2.

Table 2 SRMC of onshore, offshore, PV and nuclear generation. 

Variable Value Unit Source
Onshore 2.0 €/MWh (Seebregts et al. 2009a)
Offshore 2.5 €/MWh (Seebregts et al. 2009a)
PV 6.0 €/MWh (Seebregts et al. 2009a)
Nuclear 14 €/MWh (Seebregts et al. 2009a)
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8.3 Installed capacities

The installed capacities of different generators are presented in Table 3. The rows with that are market with 
bold fond is the data that is gathered from ECN. The numbers in between the bold rows is interpolated. 

Table 3 Installed capacities for different generators in The Netherlands from 2016 estimated until 2035. The rows with 
bold shading is the data that is used from ECN (Schoots et al., 2016; Seebregts et al., 2009b). This data for renewable 
capacity is used for both merit-orders of BOX 1. The conventional capacity is used to construct the supply curve for the 
ECN NL merit-order.

Year Onshore Offshore PV Nuclear Coal new CCGT CHP Old gas Conventional Renewable TOTAL

2016 3500 500 1000 450 4500 5500 12500 6000 28950 5000 33950

2017 4000 1000 1500 450 4500 5500 12500 6000 28950 6500 35450

2018 4500 1500 2000 450 4500 5500 12500 6000 28950 8000 36950

2019 5000 2000 2500 450 4500 5500 12500 6000 28950 9500 38450

2020 5500 2500 3000 450 4500 5500 12500 6000 28950 11000 39950

2021 6000 3000 3500 450 4500 5500 10000 6000 26450 12500 38950

2022 6500 3500 4000 450 4500 5500 10000 6000 26450 14000 40450

2023 7000 4000 5000 450 3300 5500 10000 6000 25250 16000 41250

2024 7000 4500 6000 450 3300 5500 7500 6000 22750 17500 40250

2025 7000 5000 7500 450 3300 5500 7500 6000 22750 19500 42250

2026 7000 5500 9000 450 3300 3000 7500 6000 20250 21500 41750

2027 7000 6000 10500 450 3300 3000 7500 6000 20250 23500 43750

2028 7000 6500 12000 450 3300 3000 7500 6000 20250 25500 45750

2029 7000 7000 13500 450 3300 3000 7500 6000 20250 27500 47750

2030 7000 7500 15000 450 3300 3000 7500 6000 20250 29500 49750

2031 7000 8000 16000 0 0 3000 7500 6000 16500 31000 47500

2032 7000 8500 17000 0 0 3000 7500 6000 16500 32500 49000

2033 7000 9000 18000 0 0 3000 7500 6000 16500 34000 50500

2034 7000 9500 19000 0 0 3000 7500 6000 16500 35500 52000

2035 7000 10000 20000 0 0 3000 7500 6000 16500 37000 53500

8.4 Spot market demand

Hourly average load data

The demand on the spot market is determined by the sum of the bids in kWh for a specific hour. The demand 
on the EPEX day-ahead market is following the same trend as the national electricity demand of The 
Netherlands. The reason for this is that the EPEX day-ahead market is the most prominent spot market in the 
Netherlands for bidders to balance their electricity portfolio (Drs.ir. M.P.G. Sewalt, 2003). 

The national demand of the Netherlands follows a stable trend with a rising demand in the morning, stable 
load during midday and a peak in the evening as is indicated in Fig. 27. The morning peak starts when people 
wake up and go to work. The evening peak starts when people arrive home and start to use more home 
appliances. The trend is stable during the week, but is different for Saturdays and Sundays. During the 
weekends the morning peak starts later because people start their activities later and the total demand is 
lower because most organisations are non-active during the weekend. Because the week demand and the 
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weekend demand are quite well defined they can be used to predict the electricity demand on the EPEX day-
ahead market. 

Fig. 27 Electricity demand in The Netherlands in the second week of January 2016 (ENTSO-E, 2016). The demand follows 
a specific trend throughout the day. In the morning the demand increases to a stable level during midday. In the evening 
there is a peak when people come home from work and the use of home appliances goes up. In the weekends (10th and 
11th of January) the demand is lower and the morning peak starts later.

Baseline demand increase due to electrification

Electrification is increasing the demand on spot market in The Netherlands. To make BOX 1 more adaptive 
to this changing demand a baseline demand increase growth factor is defined. This growth factor can be 
used to calculate the electricity demand for a specific year. The growth factor is based on ECN research which 
is also presented in Fig. 28 (Schoots et al., 2016).

Fig. 28 Baseline demand increase of NL national demand based on ECN studies in the growth of Dutch electricity 
demand (Schoots et al., 2016). A growth function (power function) is fitted on the predicted data points using the Excel 
fitting option. In the equation the t is the time in years and the D is the Demand in PJ (electric). 
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8.5 GAMA code for spot market
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8.6 GAMA code for connection with charge points
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8.7 GAMA code aggregator (smart charging)
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